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ABSTRACT 

In this study, a countercyclical value-at-risk (VaR) measure was introduced and estimated using the market bubble in order to assess and 

predict the crash risk of the Tehran Stock Exchange. To estimate the countercyclical VaR, the long-term and equilibrium price trend was first 

calculated using Kaufman’s Adaptive Moving Average, and based on this trend, the deviation from equilibrium was computed as the bubble 

index in the Tehran Stock Exchange. Subsequently, using the bubble index, a metric for inflation (compensation) of returns in the direction 

opposite to the bubble was introduced. On this basis, raw returns were transformed in a manner that incorporated the presence of bubbles 

in the market, and the bubble-adjusted value-at-risk measure was calculated using these transformed data. This study utilized daily data from 

the Tehran Stock Exchange index over the period 2015 to 2024. The findings indicate that the standard value-at-risk has a higher explanatory 

power for stock market crash risk compared to the countercyclical value-at-risk; however, interpretation of the model coefficients shows that 

the countercyclical VaR provides a more logically consistent explanation of the relational mechanism between value-at-risk and stock market 

crash risk. 
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Introduction 

Asset price bubbles and their associated risks have long been among the most critical topics in financial 

economics, largely because of their capacity to distort market valuations, destabilize economic systems, and 

magnify systemic vulnerabilities. Financial markets are inherently susceptible to periods of excessive optimism, 

mispricing, and speculative booms that drive asset prices significantly above their fundamental values, often 

culminating in sharp reversals and market crashes. Recent developments in global and regional markets 

demonstrate that understanding the dynamics, formation mechanisms, and consequences of bubbles is essential 

for designing effective risk-assessment frameworks and regulatory responses. Contemporary research highlights 

that financial markets—particularly emerging and developing markets—are more prone to bubble formation due to 

structural inefficiencies, behavioral biases, and heightened exposure to macroeconomic volatility (1). From 

theoretical and empirical perspectives, assets may deviate from fundamental valuations when investors extrapolate 

https://doi.org/10.61838/jmbs.94
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0009-0001-9832-0031
https://orcid.org/0000-0001-8642-4792
https://orcid.org/0000-0001-8907-9736


 Rohi et al. 

2 
recent price increases into the future, when liquidity surges fuel speculative demand, or when policy shocks create 

distortions that amplify risk-taking (2, 3). 

The nature of bubbles has increasingly been examined through multiple analytical lenses, with scholars 

emphasizing their connection to systemic risk, volatility clustering, and contagion across markets. For example, 

Brunnermeier et al. (2020) argue that bubbles constitute an integral part of systemic risk transmission, given that 

they reflect misaligned expectations and excessive leverage, which together enhance the vulnerability of financial 

systems to abrupt crashes (4). Parallel research such as Zhang et al. (2023) shows that asset price bubbles can 

propagate systemic fragilities within interconnected financial institutions, especially in markets where banks and 

investment firms exhibit high exposure to speculative assets (5). These findings are consistent with global evidence 

indicating that bubbles often emerge in environments characterized by heightened uncertainty, macroeconomic 

shocks, or persistent deviations in market fundamentals (6). 

Price bubbles are not only market-specific phenomena but often reflect broader macro-financial dynamics. 

Studies of energy, commodities, currency, and housing markets show widespread bubble formation across asset 

classes. In crude oil markets, speculation and uncertainty have been shown to trigger extreme price bubbles, 

particularly during crisis periods or geopolitical tensions (2, 7). Similar dynamics appear in copper markets, where 

periodically collapsing bubbles indicate recurrent speculative cycles linked to global demand fluctuations (8). 

Housing markets also display localized bubbles, driven by submarket dynamics, investor sentiment, and credit 

cycles, as evidenced by findings in the Greater Sydney housing market (9). Furthermore, recent cryptocurrency 

research shows persistent bubble episodes in Bitcoin and Ethereum, often coinciding with shifts in volatility regimes 

and speculative trading waves (10). These studies underscore the universality of bubble behavior across asset 

categories and highlight the importance of advanced detection and forecasting methods. 

In emerging markets, including Iran, price bubbles represent even more complex and consequential phenomena. 

Scholars note that low market depth, concentrated ownership structures, and investor herding amplify the probability 

of bubble formation in these contexts (11). Research focusing on the Tehran Stock Exchange (TSE) finds that 

expectations, volatility shocks, and structural transformations play decisive roles in generating price bubbles. For 

instance, Izadi et al. (2021) identify the pivotal role of investor expectations, particularly in response to 

macroeconomic instability and currency fluctuations, in driving bubble formation in the Iranian stock market (12). 

Likewise, Mohammadi and Hoseini (2022) demonstrate that monetary policy shocks can propagate through asset 

markets and create conditions conducive to bubble formation, especially when policy interventions distort liquidity 

conditions (13). Bubble contagion is also evident between currency and stock markets in Iran, indicating a high 

degree of market interdependence (14, 15). 

The behavioral components of bubble formation are similarly important in the Iranian context. Emotional shocks 

and sentiment-driven trading significantly influence bubble dynamics, as Rahmanian et al. (2019) show in their 

dynamic stochastic general equilibrium (DSGE) analysis, where investor optimism or panic contributes directly to 

deviations from fundamental valuations (16). Moreover, irregularities in stock price behavior—such as overreaction, 

underreaction, and herd behavior—are major predictors of bubble episodes in Iranian markets (17). These findings 

reinforce the view that bubble formation is a multidimensional process shaped by market microstructure, 

macroeconomic shocks, investor psychology, and expectations. 

The global literature also offers advanced methodologies for detecting bubbles, serving as essential tools for 

understanding and quantifying market vulnerabilities. Traditional econometric tests, such as the right-tailed ADF 
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tests standardized by Phillips and Yu, have been extended with covariates, volatility metrics, and structural break 

adjustments to improve detection accuracy (6). Recent innovations include the use of options-based bubble 

detection models, which leverage implied volatility patterns and derivatives pricing to reveal bubble characteristics 

not observable through spot prices alone (18). These methods underscore the increasing sophistication of bubble 

diagnostics and the importance of integrating diverse indicators—including volatility, liquidity cycles, and tail risk. 

Tail risk, in particular, has emerged as a central indicator in bubble research. Jiang et al. (2020) demonstrate 

that extreme downside risk significantly influences asset pricing, particularly during bubble collapses when tail 

behavior intensifies (3). This resonates with the broader theoretical literature suggesting that bubbles tend to inflate 

the left-tail risk of return distributions by increasing vulnerability to abrupt price declines (1). Such findings have 

deep implications for risk-management frameworks, highlighting the need for dynamic and countercyclical risk 

measures that reflect market phases more accurately than static or unconditional metrics. 

Amid these global and domestic insights, the Iranian economy faces additional bubble-inducing pressures 

stemming from chronic inflation, exchange rate volatility, and macroeconomic imbalances. For instance, empirical 

evidence from Ethiopia demonstrates that inflation and currency fluctuations may induce non-linear effects on 

economic activity and speculative behavior (19). Similar to Iran, these dynamics reflect how persistent 

macroeconomic instability can heighten uncertainty and distort investment decisions. Complementary research 

further shows that exchange rate volatility strongly affects inflation dynamics and may indirectly amplify bubble 

formation by altering expectations and risk-taking incentives (20). For Iran, given its structurally volatile exchange 

rate environment, the reciprocal relationship between inflation deviation and exchange rate fluctuations is especially 

relevant. Pirpour and Samsami (2025) confirm this relationship through a stochastic Mundell–Fleming model, 

demonstrating how exchange rate shocks may spill over into pricing behaviors and speculative cycles (21). 

Given these circumstances, accurately measuring risk exposure during bubble periods becomes essential for 

both investors and regulators. Traditional value at risk (VaR) measures, while widely used, often underestimate 

downside risk during bubble expansion because they rely on historical volatility assumptions that fail to reflect the 

asymmetric and explosive nature of bubble dynamics. Scholars such as Mohammadi et al. (2023) and Faqih 

Kashani et al. (2024) emphasize the need for adaptive, bubble-sensitive risk metrics capable of incorporating market 

deviations from equilibrium (11, 14). International findings also highlight the limitations of standard VaR frameworks 

during periods of high uncertainty and tail dependence, calling for more robust approaches capable of capturing 

nonlinear distributional dynamics (8, 10). 

Countercyclical risk assessment approaches have therefore gained increasing academic and practical attention. 

These approaches adjust risk estimates according to market conditions, thereby offering more realistic estimates 

of potential losses during bubble expansions and contractions. By incorporating deviations from equilibrium prices, 

countercyclical VaR frameworks attempt to capture the market’s true latent risk, especially when speculative 

pressure artificially inflates asset prices (22). This view aligns with systemic risk approaches, which argue that 

monitoring deviations from fundamentals is crucial for building early warning indicators for market crashes (5). 

In this context, the Tehran Stock Exchange—characterized by periodic speculative surges, sensitivity to 

macroeconomic shocks, and structural market inefficiencies—provides an important empirical setting for analyzing 

countercyclical risk metrics and exploring their performance relative to conventional VaR. Market dynamics in Iran 

display recurrent bubble cycles driven by exchange-rate shocks, speculative trading, and policy interventions. 

Research indicates that these shocks contribute to abrupt volatility clustering, systematic mispricing, and amplified 
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tail risk (7, 13). Furthermore, contagion patterns between currency and equity markets suggest that risk cannot be 

fully captured unless bubble characteristics are explicitly integrated into risk measures (15). 

Although the literature on bubble detection, contagion, and macro-financial instability in Iran has grown 

considerably, less attention has been paid to the development of bubble-adjusted risk metrics tailored to the local 

market structure. The gap is particularly significant given that the conventional VaR framework may misrepresent 

potential losses during bubble periods, especially in environments where structural breaks, expectations, and policy 

shocks play a defining role in shaping risk dynamics (12). Thus, integrating bubble indicators into risk estimations 

may provide more accurate and proactive assessments of stock market crash risk. 

Given these observations, the present study seeks to contribute to the literature by measuring crash risk in the 

Tehran Stock Exchange through a countercyclical value-at-risk framework that explicitly incorporates bubble 

dynamics. This approach offers a novel perspective for evaluating risk during speculative periods and enables 

deeper understanding of the relationship between bubble behavior, volatility, and market vulnerability across time. 

Therefore, the aim of this study is to evaluate and compare the explanatory power of value at risk (VaR) and 

countercyclical value at risk (BuVaR), constructed using market bubbles, in predicting stock market crash risk in the 

Tehran Stock Exchange. 

Methods and Materials 

The present research is applied in terms of objective and correlational in terms of its nature and method. 

Moreover, regarding the characteristics and direction of the data, it is ex-post facto and based on historical 

information. Given that this study aims to introduce and compute the bubble-adjusted value-at-risk metric as an 

indicator for measuring market risk in the Tehran Stock Exchange, the statistical population consists of the Tehran 

Stock Exchange Total Index, representing the market portfolio, which can appropriately reflect the price fluctuations 

of listed companies. In this study, daily data from the Tehran Stock Exchange Total Index were used, and the index 

information for the 10-year period 2015 to 2024 was collected and analyzed. Time-series data related to the Total 

Index were collected from the official website of the Tehran Stock Exchange. Microsoft Excel software was used 

for data organization and preliminary computations on the raw data, and the R software (version 4.3.3) was 

employed for data analysis and model estimation to determine value at risk and bubble-adjusted value at risk. 

To address the research question, the effects of value at risk and countercyclical value at risk—constructed using 

the market bubble—were assessed separately in distinct regression models to evaluate their influence on stock 

price crash risk. The predictive power of each model in forecasting stock price crashes was then estimated and 

compared. For this purpose, regression models (1) and (2) were fitted separately for each of the value-at-risk 

criteria. 

(1) CR_t = α_0 + α_1 VaR_t + α_2 RV_[t−14:t] + α_3 MP_t + α_4 PRM_t + ε_t 

(2) CR_t = α_0 + α_1 BuVaR_t + α_2 RV_[t−14:t] + α_3 MP_t + α_4 PRM_t + ε_t 

In these models, CR_t denotes stock market crash risk; RV_[t−14:t] represents the 14-day return volatility of the 

index from day t−14 to day t; MP_t denotes the industry index on day t; and PRM_t denotes the market risk premium 

(the difference between the risk-free rate and the market return). VaR_t denotes value at risk, and BuVaR_t denotes 

countercyclical value at risk using the market bubble. 

To measure stock market crash risk, equation (3) was used in accordance with Habib, Hasan, and Jiang (2018): 

(3) CR = − [ n(n−1)^(3/2) Σ W_τ^3 ] / [ (n−1)(n−2)(Σ W_τ^2 )^(3/2) ] 
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In this equation, n is the total number of periods examined for calculating crash risk. Also, W is computed daily 

as 1 plus the residual (ε_τ) of regression model (4): 

(4) r_τ = α_j + β_1 r_(m,τ−2) + β_2 r_(m,τ−1) + β_3 r_(m,τ) + β_4 r_(m,τ+1) + β_5 r_(m,τ+2) + ε_τ 

In equation (4), r_(m,τ) is the 14-day simple moving average of the market on day τ, and r_τ is the index return 

on day τ. Therefore, for the index on each day, there is a value ε_(j,τ) such that W_τ = 1 + ε_τ. 

To calculate VaR_t, equation (5) was applied: 

(5) VaR = M · Z_α · δ √T 

In equation (5), M denotes the total invested value, Z_α is the α-percent quantile of the standard normal 

distribution, δ is the daily standard deviation of logarithmic index returns, and T is the time horizon for which VaR is 

calculated. 

To compute countercyclical value at risk using the market bubble (BuVaR_t), the logarithmic return time-series 

was first decomposed into three components describing long-term trend (L_t), cycle (S_t), and noise (Z_t), 

according to equation (6): 

(6) X_t = L_t + S_t + Z_t 

While the trend component is driven by real economic growth, the noise component reflects realized trading 

activities under normal efficient-market conditions. Wong (2013) argues that the cycle component explains 

phenomena such as fat-tailed distributions or volatility clustering, which conventional VaR attributes to the noise 

term. 

After extracting the cycle component from the original data, sequential Augmented Dickey–Fuller (ADF) tests on 

rolling windows of the cycle process were used to detect bubbles. Phillips (2018) confirmed the ADF framework as 

suitable for identifying bubbles. The test is repeatedly estimated for rolling subsamples, and the corresponding t-

statistic for each subsample is compared with the right-tail critical value of the relevant distribution. Phillips (2018) 

define the start and collapse of explosive behavior as follows: 

(7) t̂_e = Inf_(s ≥ t_0) { s : ADF_s > cv_β^adf (s) } 

(8) t̂_f = Inf_(s ≥ t̂_e) { s : ADF_s < cv_β^adf (s) } 

In these equations, t̂_e and t̂_f denote the bubble origination and termination dates, respectively. Thus, the ADF 

test is applied on rolling windows of subsamples taken from the main sample, and the test statistic is compared 

against the critical value for each subsample. The first date at which the statistic exceeds the right-tail critical value 

of the corresponding t-distribution marks the bubble’s formation, and the first subsequent date at which it falls below 

the critical value marks the bubble’s collapse. 

After identifying the bubble formation and collapse periods, the size of countercyclical bubbles in each bubble 

cycle must be computed. For this purpose, original data in each bubble period are compared with their expected 

value (a moving-average-based benchmark). Wong (2013) argues that moving averages are not suitable 

benchmarks during crash periods; instead, a rank-filtering process is proposed to extract a well-behaved price 

benchmark (μ_d). In this process, extreme price changes are removed, and historical prices are replaced such that 

the moving average of these values defines the benchmark price. Therefore, the deviation from the benchmark 

price representing bubble formation is calculated using equation (9): 

(9) B_d = X_d / μ_d − 1 

In this equation, μ_d is the moving average of filtered historical prices, B_d is the bubble size on day d, and X_d 

is the latest price used in computing μ_d. The adaptive moving average satisfies the condition that in long-term 
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growth periods, investments are not penalized by bubbles. Due to sustained trend growth, bubble magnitude 

declines and does not become negative during downturns; instead, benchmark prices fall in proportion to initial 

price declines. Thus, during crashes, inflation becomes negative, producing a downward bubble (Wong, 2014). 

Furthermore, the bubble moves synchronously with the market cycle, making it countercyclical. Accordingly, BuVaR 

co-moves with the market and often leads to identifying crashes or reversals (Wong, 2014). 

After computing countercyclical bubbles, the returns used in VaR estimation must be adjusted using an inflation 

factor to ensure returns reflect the actual conditions shaped by market bubbles. Typically, the cycle component is 

combined with break, compression, or hybrid transformations to explain phenomena in asset-return series, and it is 

argued that price-series components can model actual market behaviors. The main goal of using the cycle is to 

asymmetrically inflate the distribution tail thickness: the larger the deviation of price from its benchmark—that is, 

the larger the bubble—the higher the crash risk. Therefore, the tail inflation must reflect this increased crash risk by 

multiplying the return distribution by an inflation factor. Wong (2014) defines this inflation factor as a response 

function that converts bubble B_d into the inflation factor ∆_d for each day d, as follows: 

(10) ∆_d = Min( Ψ/(2σ_d), exp{ (|B_d| / B_max)^ω × ln(Ψ/(2σ_d)) } ) 

Here, ∆_d ≥ 1, and ω is a curvature parameter determining the smoothness of variations in BuVaR. The inflation 

factor ∆_d grows with the bubble and, at ω = 2, acts as a cap for the bubble—i.e., the factor cannot exceed this cap 

even if the bubble increases further. The factor is capped at Ψ/(2σ_d). The ratio Ψ/(2σ_d) approximates the shift 

from the current VaR, 2σ_d, to Ψ. Empirically, Ψ is defined as the mean of the five largest losses and five largest 

gains in the entire asset-return sample (based on absolute daily returns). Empirical studies show that ω = 0.5 

provides the smoothest daily variation in BuVaR. Wong uses 2σ_d as an approximation for VaR; in this study, 2σ_d 

is replaced directly with VaR. B_max denotes the maximum absolute bubble value in the asset’s history. Thus, ∆_d 

lies between VaR and its upper cap and adjusts each scenario multiplicatively on one side of the return distribution. 

The BuVaR method begins with the assumption that the distribution tails of financial variables are unknown and 

aims to provide a more accurate alternative to conventional VaR. Accordingly, bubbles identified in the St cycle 

must be compensated to prevent price crashes. Under this approach, return distribution X_t is adjusted to offset 

bubble effects. Under the BuVaR method, the return on day d is transformed using equation (11): 

(11) R_n = { 

  ∆_d R_n  if sign(R_n) ≠ sign(B_t) 

  R_n    if sign(R_n) = sign(B_t) 

} 

Here, B_d is the bubble index and ∆_d is a function of B_d. Economically, this transformation compensates for 

the asymmetric crash risk that is not captured in the distribution of R_n and conventional VaR. Thus, if the bubble 

forms in an upward trend (B_d > 0), the negative side of the return distribution is transformed using the inflation 

factor (affecting long positions). If the bubble forms in a downward trend (B_d < 0), the positive side of the distribution 

is inflated (affecting short positions). Therefore, due to its countercyclical nature, BuVaR helps create a 

countercyclical capital buffer for market risk. As a result, calculating VaR based on the inflated returns in equation 

(11) leads to the estimation of countercyclical value at risk using the market bubble. 
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Findings and Results 

The price bubble is a key determinant of the countercyclical value-at-risk (VaR) using the market bubble in this 

study. To identify price bubbles in the stock index, and consistent with Phillips (2018), sequential ADF tests were 

performed on 100-day rolling windows of observations, and the resulting test statistics were compared with their 

critical values at the 95% confidence level. These tests were conducted on the logarithmic returns of the index. 

Figure (1) illustrates the changes in index levels and their logarithmic returns over the research period. 

 

 

 

Figure 1. Time series of index values (left) and logarithmic returns (right) over the research period 

Performing this test on the cyclical component of the logarithmic returns of the index resulted in the identification 

of 87 countercyclical price bubbles across all observations (Figure 2). 

 

Figure 2. Price-bubble formation ranges (yellow bands), return trend (blue curve), and logarithmic 

returns (black curve) 

As shown in Figure (2), the price bubbles formed periodically affect the logarithmic returns. The sequence of 

bubble-formation intervals (yellow bands) in Figure (2) indicates the bubble origination and collapse points on the 

index returns. To calculate the magnitude of the price bubble formed in each of the 87 bubble days, equation (9) 

was applied by comparing realized returns with their adaptive moving average. These bubble magnitudes were 

then used to compute the inflated returns using equation (11). In computing inflated returns, the five largest losses 

and the five largest gains (return boundary values), along with other inflation parameters, were applied on bubble-

formation days. The values of each parameter are shown in Table (1). 
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Table 1. Initial parameter values in calculating inflated returns on bubble-formation days 

Parameter Value 

Five largest losses (−0.042535, −0.044628, −0.048277, −0.049496, −0.052912)  

Five largest gains (0.058109, 0.055670, 0.048421, 0.045494, 0.044004) 

Ψ 0.001384897 

ω 0.5 

σ_d 0.00991066 

∆_d 0.0698689 
 

Accordingly, the inflated returns on bubble-formation days were computed through the inflation factor ∆_d. The 

computational results showed that the value of ∆_d in all bubble-formation periods was equal to Ψ/(2σ_d). 

Therefore, in computing inflated returns (equation 11), the inflation factor ∆_d was considered a constant coefficient.  

After computing the inflated returns on bubble-formation days, the countercyclical value-at-risk and conventional 

value-at-risk were estimated using inflated returns and logarithmic returns, respectively, over the entire research 

period. Figure (3) shows the evolution of VaR and BuVaR over the research period. 

 

Figure 3. Value at Risk (VaR) and Countercyclical Value at Risk Using Market Bubble (BuVaR) 

In computing both VaR metrics, the total investment value was set equal to 1,000,000 monetary units, and the 

VaR measures were calculated using 30-day rolling windows applied to the logarithmic and inflated returns. Figure 

(3) shows that countercyclical VaR using the market bubble is smaller than conventional VaR across the entire 

research period. This finding indicates that penalizing returns on bubble-formation days using the inflation factor 

∆_d leads to lower investment value-at-risk. After estimating the values of both types of VaR, concentration and 

dispersion measures of the variables were examined to evaluate their overall statistical characteristics. A summary 

of the descriptive statistics of the model variables is presented in Table (2). 
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Industry Index 4434.275 5336.150 12,618.17 477.3 3721.669 
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According to the indicators reported in Table (2), it is observed that the average price bubble of the stock index 

is 2.83724 units. The highest bubble value corresponds to 4 December 2023 (13/09/1402 in the Persian calendar), 

and the lowest value corresponds to 11 June 2018 (21/03/1397 in the Persian calendar). The value at risk of 

investment in the stock market for an investment of 1,000,000 monetary units is, on average, 16,606 units, and the 

countercyclical value at risk using the bubble for 1,000,000 monetary units is, on average, 5,505 units, which is 

approximately one third of the conventional value at risk. The average stock market crash risk is 0.1837, and the 

average value of the total index over the research period is 2,952,762. The mean logarithmic return of the index is 

0.00069, and the average value of the industry index is 4,434.275. It is noteworthy that, given the importance of the 

rate of return and the interest rate as key risk factors in shaping overall market trends and the rise or fall of the total 

index, the banking industry index was used as the industry index. The average market risk premium over the 

research period is 0.00119, and the mean 14-day return volatility is 0.00416. 

To answer the research question, the effects of two metrics—value at risk and countercyclical value at risk using 

the bubble—on stock market crash risk were tested through two separate regression models, and the explanatory 

power of these two models was compared. It should be noted that, due to significant structural changes in the index 

trend from 22 September 2019 onward (31/06/1398 in the Persian calendar), a dummy variable was employed to 

separate the effects of the variables in the regression model. The value of this dummy variable is equal to zero for 

periods before this date and equal to one for periods after it. Figure (4) illustrates the index movements separately 

for these two subperiods. 

  

 

Figure 4. Index values in periods before (left) and after (right) 22 September 2019 

Accordingly, the regression models under investigation were rewritten using equations (12) and (13) and then 

estimated. 

(12) CR_t = α_0 + α_1 VaR_t + α_2 RV_[t−14:t] + α_3 MP_t + α_4 PRM_t + α_5 Dum2019_t + α_6 (Dum2019_t 

× VaR_t) + ε_t 

(13) CR_t = α_0 + α_1 BuVaR_t + α_2 RV_[t−14:t] + α_3 MP_t + α_4 PRM_t + α_5 Dum2019_t + α_6 

(Dum2019_t × BuVaR_t) + ε_t 

Before final model estimation, the basic regression assumptions of the models were tested. Given that the 

significance levels obtained from the Breusch–Pagan–Godfrey and Breusch–Godfrey tests were smaller than the 

0.05 error level, the assumptions of homoskedasticity and independence of the error terms in both models were not 

supported. Therefore, to mitigate the effects of heteroskedasticity and autocorrelation of the error terms on the 
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estimation of regression coefficients, robust regression with HAC (heteroskedasticity and autocorrelation 

consistent) estimators was used. It should also be noted that, to enhance the predictive power of the model for 

stock market crash risk, the first-order lag of the dependent variable was included as the first explanatory variable 

in the model. This not only increased the model’s ability to predict the dependent variable but also partly reduced 

the impact of autocorrelation in the error terms. Table (3) reports the estimation results of these two regression 

models, along with the diagnostic tests of basic assumptions and the model goodness-of-fit indices. 

According to the results in Table (3), the significance level of both regression models testing this hypothesis is 

smaller than the 0.05 error level, confirming the overall significance of the regression models in explaining stock 

market crash risk. Based on the adjusted coefficients of determination of the two models, it is observed that the 

VaR-based model can explain 97.59% of the variation in stock market crash risk, whereas the countercyclical VaR-

based model can explain 97.47% of the variation in stock market crash risk. Therefore, using a strict comparison, 

it can be concluded that conventional value at risk provides a slightly better prediction of stock market crash risk. 

Hence, the BuVaR metric did not outperform the VaR metric in identifying stock market crash risk. 

Table 3. Estimation results of the research regression models 

Model / Explanatory 
Variable 

Value at 
Risk 

  

Countercyclical Value at 
Risk 

  

 

Coefficient t-Statistic Significance Coefficient t-Statistic Significance 

Stock Market Crash Risk 
(t−1) 

0.922908 26.26088 0.000 0.928007 16.73361 0.000 

Value at Risk −0.0000457 −4.891564 0.000 −0.0000892 −6.098847 0.000 

14-Day Volatility 59.22090 2.088616 0.0370 27.77723 1.419259 0.1561 

First Difference of Industry 
Index 

−0.001167 −1.803788 0.0715 −0.001247 −1.567754 0.1172 

Market Risk Premium 2.226013 0.370773 0.7109 0.564792 0.091090 0.9274 

Effect of Post-2019 Period −0.345751 −2.415469 0.0159 −0.497195 −2.312556 0.0209 

Post-2019 Effect × Value 
at Risk 

0.0000319 4.487053 0.000 0.0000904 3.858021 0.0001 

Constant 0.351033 5.344661 0.000 0.348018 4.301468 0.000 

   Basic assumptions and regression model diagnostics 

Statistic VaR Model BuVaR Model 

Adjusted R² 0.975914 0.974711 

Durbin–Watson Statistic 2.209125 2.211122 

Likelihood Ratio Statistic 6507.130 6189.762 

Model Significance 0.000 0.000 

Breusch–Pagan–Godfrey Statistic 5.711120 2.328387 

Breusch–Pagan–Godfrey Probability 0.000 0.0229 

Breusch–Godfrey Statistic 4099.609 35.00361 

Breusch–Godfrey Probability 0.000 0.000 

 

In interpreting the regression coefficients, it should be noted that both value at risk (p-value = 0.000) and 

countercyclical value at risk (p-value = 0.000) have a statistically significant impact on stock market crash risk, and 

the moderating effect of the post-2019 period is also significant in this relationship. The estimated coefficients 

indicate that in the pre-2019 period (Dum2019 = 0), both value at risk and countercyclical value at risk have a 

negative and significant effect on stock market crash risk. However, in the post-2019 period (Dum2019 = 1), which 

coincides with a substantial rise in the index, value at risk has an effect equal to −0.00000138 (α_1 + α_6) on crash 

risk, whereas countercyclical value at risk shows an effect equal to 0.0000012 (α_1 + α_6) on crash risk. This result 

implies that, in the period after 2019, an increase in countercyclical value at risk is associated with a higher expected 

stock market crash risk, whereas according to conventional value at risk, in the post-2019 period, an increase in 
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investment VaR is associated with a decrease in stock market crash risk—an outcome that is counterintuitive. 

Therefore, based on the interpretation of the regression coefficients, countercyclical value at risk appears to provide 

a more logically consistent explanation of stock market crash risk. 

Discussion and Conclusion 

The findings of this study shed important light on the dynamics of stock market crash risk in the Tehran Stock 

Exchange and the role played by bubble-adjusted risk indicators in explaining market vulnerabilities. The empirical 

results demonstrated that both conventional value at risk (VaR) and countercyclical value at risk (BuVaR) exert 

statistically significant effects on crash risk. However, their explanatory power and sign behavior differ across 

periods, particularly before and after the structural break identified in 2019. Specifically, while the VaR-based model 

accounted for 97.59% of changes in crash risk, the BuVaR-based model explained 97.47%, leading at first glance 

to the conclusion that VaR performed marginally better. Yet, a deeper interpretation of the coefficients indicated 

that BuVaR offers a more logical and economically consistent explanation of crash behavior, especially in the post-

2019 market environment characterized by rapid index growth and heightened speculative cycles. 

This pattern aligns strongly with existing literature that emphasizes the limitations of conventional VaR during 

bubble episodes. Traditional VaR models rely on historical volatility and normality assumptions, often 

underestimating downside risk when markets experience speculative surges or abrupt deviations from 

fundamentals. Scholars have argued that tail behavior becomes more pronounced during bubble formation, 

meaning that risk assessments must incorporate these non-linearities (3). The results of this study confirm this 

perspective: when bubble dynamics intensified post-2019, VaR misleadingly suggested a decline in crash risk, 

whereas BuVaR—designed to capture bubble-driven distortions—reflected rising vulnerability. This outcome 

strongly supports the theoretical view that risk measures must adjust to market regimes, as volatility clustering and 

explosive price movements alter distributional properties in ways that static models cannot capture (1). 

The findings also resonate with empirical research regarding bubble formation and collapse in emerging and 

transitional markets. For example, Izadi et al. showed that expectations and macroeconomic shocks significantly 

shape bubble episodes in Iran, particularly during periods of currency instability and inflationary pressure (12). 

Consistent with this, the current study revealed that the inflation-adjusted and bubble-correlated nature of market 

behavior after 2019 introduced a pronounced asymmetry in crash risk. Similarly, studies on bubble contagion 

between currency and equity markets highlight that cross-market interactions intensify speculative dynamics and 

alter risk transmission patterns (9, 14). The observed behavior of BuVaR in this study reflects this interconnected 

structure. As bubble magnitude increased, the countercyclical risk component grew accordingly, capturing more 

meaningful signals about systemic vulnerability than VaR. 

International findings reinforce these conclusions. Research examining bubble contagion in commodity 

markets—such as the work by Gharib et al., which showed that COVID-19-related shocks contributed to cross-

asset bubble spillovers in crude oil and gold markets—highlights that bubbles evolve in an interconnected and 

regime-dependent manner (22). This is consistent with the behavior seen in the Tehran Stock Exchange following 

structural economic events. Similarly, bubble detection in cryptocurrencies demonstrates that multiple bubble 

regimes frequently form and collapse, suggesting that asset prices undergo recurring phases of explosive behavior 

(10). The identification of 87 countercyclical bubbles in this study reflects these wider global patterns and highlights 

the necessity of models such as BuVaR that adjust to these cyclical deviations. 
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The stronger interpretive alignment of BuVaR with observed market dynamics is also consistent with the literature 

on bubble detection methodologies. Studies argue that the use of rolling ADF tests and adaptive moving averages 

improves the accuracy of identifying bubble regimes, particularly when markets experience structural breaks or 

abrupt shifts (6, 8). The use of these techniques in this research ensured that bubble cycles were identified with 

precision. In addition, Fusari et al. emphasized that bubble detection models benefitting from real-time adjustments 

provide better predictive accuracy than static measures based solely on historical price movements (18). Applying 

this logic, the countercyclical inflation factor used in BuVaR allowed risk estimates to respond more dynamically to 

deviations between realized prices and equilibrium benchmarks. 

Moreover, the study’s findings reflect the broader macro-financial context of Iran, where chronic inflation, 

exchange rate shocks, and policy-induced uncertainties characteristically fuel speculative trading waves. Research 

has noted that these macroeconomic distortions create environments conducive to repeated bubble episodes and 

heightened crash vulnerability. Pirpour and Samsami’s analysis on the stochastic Mundell–Fleming model highlights 

the reciprocal influence of exchange-rate fluctuations and inflation deviations, a pattern that closely aligns with the 

bubble-induced distortions captured by BuVaR (21). Similarly, analyses of inflation and economic volatility in 

comparable contexts, such as Ethiopia, underscore how macroeconomic instability fosters speculative tendencies 

and destabilizes market expectations (19). The countercyclical behavior captured by BuVaR aligns tightly with these 

findings, suggesting that risk measures incorporating macro-volatility signals provide superior explanatory power 

relative to static measures such as VaR. 

The results are further supported by literature investigating the behavioral underpinnings of bubble cycles. 

Studies show that emotional shocks, sentiment-driven trading, and investor expectations significantly influence 

bubble growth and collapse (16). These behavioral features often cause asymmetries in risk perception and lead to 

market overreactions or underreactions that are inadequately captured by conventional VaR. Because BuVaR 

integrates bubble magnitude directly into its inflation mechanism, it inherently captures the sentiment-driven, cycle-

dependent aspects of market behavior, thereby reflecting crash risk more meaningfully. 

Additionally, research on systemic risk in Chinese financial institutions notes that bubble formation magnifies 

systemic fragility by connecting micro-level price distortions to macro-level financial vulnerabilities (5). The findings 

of this study align with this systemic risk perspective, showing that in periods of speculative acceleration, traditional 

risk measures may become disconnected from actual systemic vulnerabilities. By contrast, BuVaR’s sensitivity to 

directional price distortions makes it more adept at identifying the build-up of systemic pressures. 

The contrast between pre-2019 and post-2019 behavior of VaR and BuVaR further emphasizes the importance 

of regime-sensitive risk measures. Before the structural break, both indicators negatively and significantly predicted 

crash risk, consistent with the notion that elevated risk exposure was associated with market stabilization rather 

than collapse. However, after 2019—with the heightened presence of speculative cycles—the two measures 

diverged sharply. VaR displayed a counterintuitive negative relationship with crash risk, suggesting that rising risk 

exposure reduced the likelihood of a crash. BuVaR, however, shifted sign appropriately, indicating that greater 

bubble-adjusted risk exposure increased crash vulnerability, in line with established economic theory and empirical 

observations in global bubble research (7). This divergence confirms the argument that traditional VaR fails under 

bubble-driven regimes and that bubble-adjusted metrics provide a more structurally realistic representation of 

market risk. 
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In conclusion, the results strongly support the theoretical framework asserting that bubble-sensitive and 

countercyclical risk metrics outperform traditional risk measures in environments characterized by speculative 

surges, macroeconomic instability, and structural market breaks. Although the statistical explanatory power of 

BuVaR is marginally lower than that of VaR, its behavioral, directional, and theoretical alignment with actual market 

dynamics makes it a more coherent and reliable indicator of crash risk under bubble conditions. 

This study is limited by its focus on a single stock market, the Tehran Stock Exchange, which may reduce 

generalizability to other markets with different structural, regulatory, or microstructural characteristics. Additionally, 

reliance on historical price data and the assumption of consistent equilibrium benchmarks may overlook deeper 

fundamental value drivers not directly observable in price series. The use of daily data, although appropriate for 

volatility and crash-risk modeling, may miss high-frequency bubble signals or microsecond-level trading distortions. 

Furthermore, the identification of structural breaks—such as the one in 2019—relies on observable market 

outcomes rather than formal structural-break testing, which may introduce model-dependency in determining pre- 

and post-periods. Finally, the BuVaR framework requires multiple layers of decomposition and parameter tuning, 

which may introduce estimation uncertainty or sensitivity to the selection of smoothing windows and threshold 

values. 

Future studies should explore bubble-adjusted risk measures across a broader set of markets, including 

developed and emerging economies, to assess cross-market robustness. High-frequency approaches could be 

integrated to detect intraday bubble behavior and crash signals. Researchers may also incorporate machine 

learning and nonlinear modeling techniques to enhance bubble detection accuracy and reduce false alarms. 

Additionally, future research could examine the role of fundamental factors such as earnings cycles, 

macroeconomic indicators, and investor sentiment indices in shaping bubble-adjusted risk dynamics. It may also 

be valuable to test hybrid risk models combining BuVaR with alternative tail-risk metrics to examine whether 

integrating multiple systemic risk indicators improves predictive accuracy for market crashes. 

Market regulators should incorporate bubble-sensitive risk metrics into early warning systems for financial 

instability. Portfolio managers may consider employing countercyclical risk tools such as BuVaR to adjust leverage 

and exposure during speculative periods. Institutional investors could use bubble-detection signals to refine asset-

allocation strategies, particularly in volatile emerging markets. Risk-management committees may also adopt 

dynamic capital buffers that respond directly to deviations from equilibrium prices, thereby strengthening resilience 

during market turbulence. 
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