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ABSTRACT 

Portfolio management has consistently faced the fundamental challenge of uncertainty in estimating asset returns and risks, which has limited 

the practical effectiveness of classical optimization approaches, particularly the Markowitz mean–variance model. In this context, the Black–

Litterman model, as a Bayesian framework, enables the derivation of more stable estimates that are consistent with market economic logic 

by combining market equilibrium returns with investor views. The primary objective of the present study is to propose a structured framework 

for portfolio management using the Black–Litterman model with the systematic incorporation of investor views grounded in fundamental 

analysis and asset pricing factors. From a methodological perspective, this research is applied–developmental and quantitative, and it is 

empirically conducted using daily stock data of manufacturing firms listed on the Tehran Stock Exchange over the period 2015 to 2023. 

Rather than relying on subjective judgments, investor views are extracted based on the results of regressions from the Fama–French three-

factor model and are incorporated into the Black–Litterman framework in the form of relative views. After computing the implied equilibrium 

returns and incorporating the views, posterior Black–Litterman returns are derived, and optimal portfolio weights are determined through 

mean–variance optimization. The performance of the resulting portfolio is compared with that of the classical Markowitz portfolio and the 

baseline Black–Litterman model using return, risk, and risk-adjusted performance measures. The findings indicate that the implied equilibrium 

returns obtained from the Black–Litterman model are generally more conservative than historical averages and help prevent overfitting to 

past data. The empirical results show that incorporating Fama–French–based views leads to a significant increase in cumulative returns, 

improvements in the Sharpe and Sortino ratios, and reductions in the standard deviation and maximum drawdown of the portfolio compared 

with both the Markowitz approach and the Black–Litterman model without views. Moreover, sensitivity analysis with respect to the τ parameter 

demonstrates that selecting intermediate values of this parameter can establish an appropriate balance between market information and 

investor views. Overall, the results confirm that the structured integration of Fama–French factor analysis with the Bayesian Black–Litterman 

framework enhances the stability of asset allocation and improves the risk-adjusted performance of portfolios, and can therefore serve as a 

practical and reliable framework for investment managers in volatile and emerging markets. 

Keywords: Portfolio management; Black–Litterman model; Fama–French three-factor model; investor views; portfolio optimization; Tehran 

Stock Exchange. 

 

Introduction 

Portfolio management has long stood at the center of both theoretical finance and practical investment decision-

making, driven by the fundamental challenge of allocating capital among risky assets in a manner that balances 

expected return against uncertainty. Classical portfolio theory, originating from the mean–variance framework, 
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provided a mathematically elegant solution to this problem by formalizing diversification and optimality under risk 

aversion. However, despite its conceptual importance, extensive empirical evidence has shown that traditional 

optimization approaches are highly sensitive to estimation errors in expected returns and covariance matrices, often 

resulting in unstable and counterintuitive portfolio weights. This gap between theoretical optimality and practical 

robustness has motivated a substantial body of research aimed at developing portfolio construction frameworks 

that are both economically meaningful and empirically reliable (1, 2). 

Within this broader context, the Black–Litterman model has emerged as one of the most influential innovations 

in modern portfolio management. Originally introduced as a Bayesian extension of mean–variance optimization, the 

Black–Litterman framework addresses key weaknesses of classical models by anchoring expected returns to a 

market equilibrium and allowing investors to incorporate subjective or model-based views in a controlled and 

transparent manner. By combining equilibrium-implied returns with investor views through Bayesian updating, the 

model generates posterior return estimates that are more stable and better aligned with market structure than naïve 

historical averages (3, 4). This equilibrium-based anchoring is widely regarded as a critical mechanism for mitigating 

the overfitting and extreme allocations that often plague traditional optimization. 

Over the past two decades, the Black–Litterman model has evolved from a practitioner-oriented heuristic into a 

rich and expanding research paradigm. Early contributions focused on clarifying the mathematical structure of the 

model, interpreting its parameters, and providing step-by-step implementation guidelines that made it accessible to 

portfolio managers and researchers alike (4). Subsequent studies extended the original framework by relaxing 

distributional assumptions, incorporating alternative risk measures, and embedding the model within broader 

Bayesian decision-theoretic perspectives (3, 5). These developments collectively repositioned the Black–Litterman 

model not merely as an adjustment technique, but as a general paradigm for combining heterogeneous information 

sources in investment management. 

A central theme in the contemporary literature concerns the nature and construction of investor views. In its 

original formulation, the Black–Litterman model allows views to be expressed as linear combinations of asset 

returns, accompanied by a confidence measure reflecting uncertainty. While this flexibility is theoretically appealing, 

it raises practical questions regarding how views should be generated in a disciplined and reproducible manner. 

Early applications often relied on subjective judgments or discretionary forecasts, which, although valuable in 

practice, limit transparency and reproducibility in empirical research. As a result, a growing strand of literature has 

sought to ground investor views in observable data, econometric models, and asset pricing theory (1, 6). 

One influential approach to systematic view generation involves linking the Black–Litterman framework with 

factor models of asset returns. Asset pricing models, such as the Capital Asset Pricing Model and its multifactor 

extensions, provide a theoretically grounded description of how returns relate to systematic risk factors. By 

exploiting estimated factor loadings and expected factor premia, researchers can construct views that are 

economically interpretable and empirically testable. Recent studies have demonstrated that factor-based views can 

improve portfolio performance by aligning expected returns with underlying sources of risk and return, rather than 

relying solely on historical averages (7, 8). This integration represents a meaningful step toward bridging the gap 

between asset pricing theory and portfolio optimization. 

Among multifactor models, the Fama–French framework occupies a particularly prominent position due to its 

strong empirical support and widespread adoption in both academia and practice. Although originally developed to 

explain cross-sectional return patterns, its factor structure has increasingly been employed as an input to portfolio 
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construction and strategic asset allocation. By interpreting estimated factor exposures as indicators of systematic 

return drivers, investors can form relative or absolute views on assets based on their exposure to market, size, 

value, and other risk dimensions. Prior empirical evidence suggests that portfolios constructed with factor-informed 

expectations tend to exhibit more robust out-of-sample performance and improved risk-adjusted returns (9, 10). 

The integration of factor models with the Black–Litterman framework has been explored across diverse markets 

and asset classes. Empirical applications in emerging and developed markets alike indicate that the Bayesian 

combination of equilibrium returns and factor-based views can enhance diversification benefits and reduce 

sensitivity to estimation noise. Studies focusing on equity markets in Asia, Europe, and emerging economies 

consistently report that Black–Litterman portfolios incorporating systematic views outperform traditional 

benchmarks in terms of both absolute and risk-adjusted performance (9-11). These findings underscore the 

adaptability of the model to different market structures and institutional settings. 

Parallel to factor-based developments, another important research direction has examined the treatment of 

uncertainty and estimation risk within the Black–Litterman model. The choice of key parameters, particularly those 

governing the confidence in equilibrium returns and investor views, plays a decisive role in shaping posterior 

expectations and portfolio weights. Mis-specification of these parameters can undermine the intended stabilizing 

effect of the model. Consequently, several studies have proposed refined estimation techniques, robust Bayesian 

priors, and sensitivity analyses to better manage uncertainty and improve the reliability of portfolio outcomes (12, 

13). These contributions highlight that effective implementation of the Black–Litterman model requires careful 

attention not only to views themselves, but also to their associated uncertainty. 

More recent research has expanded the Black–Litterman framework by incorporating advanced statistical and 

computational techniques. Copula-based dependence structures, regime-switching dynamics, and downside-risk 

measures such as Conditional Value at Risk have been integrated into the model to better capture nonlinear 

dependencies and tail risks (2, 13). In parallel, advances in computational economics and data science have 

enabled the use of simulation-based methods, such as Markov Chain Monte Carlo and evolutionary algorithms, to 

estimate model parameters and generate dynamic views (14). These methodological innovations reflect a broader 

trend toward more flexible and data-intensive portfolio optimization frameworks. 

Another emerging strand of the literature explores the role of alternative information sources and learning 

mechanisms in Black–Litterman–type models. Rather than relying solely on traditional financial indicators, recent 

studies investigate how machine learning outputs, ordinal information, and heterogeneous expert signals can be 

systematically incorporated into the Bayesian updating process. This line of research suggests that the Black–

Litterman framework is well suited to accommodating complex and non-traditional information, provided that such 

inputs are translated into coherent views and confidence structures (15, 16). These developments further reinforce 

the model’s relevance in an era characterized by data abundance and informational complexity. 

Despite the richness of the existing literature, several gaps remain. First, while many studies emphasize the 

benefits of integrating factor-based or model-driven views, fewer contributions provide a fully structured framework 

that explicitly links asset pricing estimation, view construction, and portfolio optimization in a transparent empirical 

setting. Second, much of the empirical evidence focuses on developed markets, leaving emerging and frontier 

markets comparatively underexplored, despite their distinct risk characteristics and informational inefficiencies. 

Third, there is ongoing debate regarding the relative effectiveness of different view-generation mechanisms and 
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their impact on portfolio stability and downside risk, particularly during periods of heightened market volatility (17, 

18). 

Addressing these gaps is particularly important given the growing complexity of modern financial markets and 

the increasing demand for robust, explainable, and adaptive investment strategies. Investors and portfolio 

managers require frameworks that not only deliver superior performance metrics but also provide economic intuition 

and transparency in decision-making. The Black–Litterman model, when enriched with systematic and theory-driven 

views, offers a promising avenue for meeting these requirements by reconciling equilibrium market information with 

informed expectations about relative asset performance (5, 8). 

Against this backdrop, the present study situates itself at the intersection of Bayesian portfolio optimization and 

asset pricing theory. Building on prior theoretical and empirical contributions, it seeks to develop and empirically 

evaluate a structured approach to incorporating factor-based investor views within the Black–Litterman framework. 

By emphasizing disciplined view construction, careful treatment of uncertainty, and comprehensive performance 

evaluation, the study aims to contribute to both the methodological literature and practical portfolio management. 

In doing so, it aligns with recent calls for integrative frameworks that combine economic theory, statistical rigor, and 

empirical validation in investment research (14, 16). 

The aim of this study is to develop and empirically assess a structured Black–Litterman portfolio optimization 

framework that integrates asset pricing–based investor views to improve risk-adjusted portfolio performance. 

Methods and Materials 

In terms of purpose, this study is applied–developmental, and in terms of nature, it is quantitative, analytical, and 

model-based. The main objective is to propose a structured framework for integrating investor views based on 

fundamental analysis into the Black–Litterman model in order to improve asset allocation and portfolio risk 

management. Unlike traditional approaches that incorporate views subjectively, in this study investor views are 

extracted systematically based on the Fama–French three-factor model and are combined with market equilibrium 

returns within the Bayesian Black–Litterman framework. From an implementation perspective, the research is 

empirical, and the performance of the proposed model is tested using real data from Iran’s capital market. 

The statistical population of the study consists of stocks of manufacturing companies listed on the Tehran Stock 

Exchange. To enhance sample homogeneity and ensure consistency with fundamental analysis, firms operating in 

financial industries and investment funds are excluded from the sample. Stock selection is conducted based on 

fundamental screening criteria, including positive operating profitability and a price-to-earnings ratio lower than the 

historical market average. The data are collected on a daily basis over the period from 2015 to 2023, and adjusted 

closing prices are used to compute returns. Data sources include the TSETMC platform and audited financial 

statements of firms, and the effects of periods with abnormal market volatility are analytically considered in the 

interpretation of results. 

In the analysis stage, daily stock returns are first calculated and the variance–covariance matrix is estimated. 

Subsequently, the Fama–French three-factor model is estimated for each stock, and expected returns based on 

fundamental factors are extracted. Implied market equilibrium returns are computed via reverse optimization, and 

investor views are defined as the differences between factor-based expected returns and equilibrium returns. These 

views are incorporated into the Black–Litterman Bayesian equation in the form of the Q vector and the P matrix, 

while accounting for their uncertainty through the Ω matrix, yielding posterior returns. Finally, mean–variance 
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optimization is performed, and the performance of the resulting portfolio is evaluated using measures such as return, 

risk, and the Sharpe ratio. All computations are carried out using MATLAB software. 

Findings and Results 

The skewness coefficients for most assets fall within a relatively narrow range around zero. Some assets, such 

as R_PRD01, R_PRD03, and R_PRD13, exhibit mild positive skewness, whereas assets such as R_PRD02, 

R_PRD04, R_PRD07, R_PRD12, and R_PRD17 display negative skewness. This indicates that return distributions 

are generally fairly symmetric, with slight tendencies toward extreme losses or gains. More importantly, all kurtosis 

coefficients exceed the value of 3 (normal kurtosis), ranging approximately from 3.4 to 4.6, and excess kurtosis is 

positive for all assets. This confirms the presence of fat tails and a higher probability of extreme price shocks in 

daily stock returns. 

Table 1. Descriptive statistics of daily returns of selected stocks 

Asset Code N (Observations) Skewness Standard Deviation Mean Return Kurtosis Excess Kurtosis 

R_PRD01 1565 0.22555 0.026886 0.00050231 4.5550 1.5550 

R_PRD02 1565 −0.088232 0.020778 0.00088479 4.2072 1.2072 

R_PRD03 1565 0.21870 0.025885 0.00048572 4.4513 1.4513 

R_PRD04 1565 −0.11544 0.024879 0.00054691 3.9793 0.97926 

R_PRD05 1565 0.055263 0.027292 0.00128180 4.4353 1.4353 

R_PRD06 1565 −0.065206 0.020431 0.00041321 4.0037 1.0037 

R_PRD07 1565 −0.11932 0.019229 0.00104120 4.2723 1.2723 

R_PRD08 1565 −0.078631 0.016619 0.00044361 4.1044 1.1044 

R_PRD09 1565 0.027367 0.027251 0.00055204 4.0208 1.0208 

R_PRD10 1565 −0.036405 0.017271 0.00078964 3.9491 0.94907 

R_PRD11 1565 0.060327 0.021994 0.000044903 3.4980 0.49795 

R_PRD12 1565 −0.17378 0.027827 −0.0000061065 3.9488 0.94881 

R_PRD13 1565 0.15589 0.020354 0.00129420 4.0728 1.0728 

R_PRD14 1565 −0.024625 0.024112 0.000064967 3.4456 0.44556 

R_PRD15 1565 −0.12125 0.029318 −0.00010839 3.9350 0.9350 

R_PRD16 1565 0.04193 0.019312 0.00122080 4.5902 1.5902 

R_PRD17 1565 −0.11474 0.015467 −0.00019471 3.8271 0.82705 

R_PRD18 1565 −0.04101 0.024686 0.00084933 4.2768 1.2768 

R_PRD19 1565 −0.065923 0.022409 −0.00012607 4.1763 1.1763 

R_PRD20 1565 0.040678 0.015225 0.00026772 4.1661 1.1661 

 

The results reported in Table 2 indicate that, in most cases, the implied equilibrium returns (π) are estimated to 

be lower than the historical average returns of the assets. For example, for assets R_PRD01, R_PRD05, R_PRD10, 

and R_PRD16, the difference between the historical mean and π is negative, ranging approximately from −0.00012 

to −0.00024. This pattern is consistent with the logic of the Black–Litterman model, since implied equilibrium returns 

are obtained by combining historical information with the market risk structure and market portfolio weights, thereby 

smoothing potentially optimistic historical estimates toward more conservative values consistent with overall market 

equilibrium. In other words, by imposing equilibrium constraints, the model prevents excessive return expectations 

and provides estimates that are more compatible with the variance–covariance matrix and the market’s degree of 

risk aversion. 
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Table 2. Correlation of stock returns with Fama–French three factors 

Asset Correlation with MKT_RF Correlation with SMB Correlation with HML 

R_PRD01 0.5944 0.0988 0.2215 

R_PRD02 0.7662 −0.0943 0.0801 

R_PRD03 0.7557 0.1751 0.2919 

R_PRD04 0.4845 0.3389 0.3092 

R_PRD05 0.7760 0.4110 0.2572 

R_PRD06 0.4792 0.1982 0.0380 

R_PRD07 0.7345 −0.0250 0.0047 

R_PRD08 0.6057 0.5029 0.1099 

R_PRD09 0.6811 0.1401 −0.0484 

R_PRD10 0.7584 −0.0227 −0.0180 

R_PRD11 0.7465 0.3836 0.0334 

R_PRD12 0.7099 0.2657 0.1241 

R_PRD13 0.5649 0.3282 0.4313 

R_PRD14 0.3554 0.1827 −0.0254 

R_PRD15 0.6457 0.0623 0.2224 

R_PRD16 0.6628 −0.0050 0.2854 

R_PRD17 0.6708 0.3177 −0.0760 

R_PRD18 0.5571 0.0276 0.2950 

R_PRD19 0.7039 0.1549 0.2048 

R_PRD20 0.6352 0.4084 0.1281 

 

Table 3. Comparison of implied equilibrium returns and historical means 

Asset Implied Equilibrium Return (π) Historical Mean Return Difference 

R_PRD01 0.00038 0.00050 −0.00012 

R_PRD05 0.00105 0.00128 −0.00023 

R_PRD10 0.00061 0.00079 −0.00018 

R_PRD16 0.00098 0.00122 −0.00024 

R_PRD20 0.00031 0.00027 +0.00004 

 

 

Figure 1. Heatmap of the correlation matrix of daily returns of selected stocks. 

 

Figure 1 presents a comprehensive depiction of the correlation structure among stock returns. The predominance 

of positive and moderate correlations indicates that assets are jointly affected by macro-level market shocks, while 

differences in the strength of correlations reveal the potential for diversification among certain stocks. This structure 
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is directly reflected in the estimation of the variance–covariance matrix (Σ) and influences implied equilibrium returns 

as well as optimal portfolio weights. 

Table 4. Summary of Fama–French three-factor regression results (selected sample) 

Asset Market β Size β (SMB) Value β (HML) R² 

R_PRD01 0.59 0.10 0.22 0.43 

R_PRD05 0.78 0.41 0.26 0.56 

R_PRD10 0.76 −0.02 −0.02 0.49 

R_PRD13 0.56 0.33 0.43 0.47 

R_PRD20 0.64 0.41 0.13 0.52 

 

The results in Table 4 show that the factor beta coefficients for the selected stocks reflect distinct patterns of 

exposure to the market, size, and value factors. Specifically, the market betas for assets R_PRD01, R_PRD05, 

R_PRD10, R_PRD13, and R_PRD20 are 0.59, 0.78, 0.76, 0.56, and 0.64, respectively, indicating higher sensitivity 

of R_PRD05 and R_PRD10 to market index fluctuations. With respect to the size factor (SMB), assets such as 

R_PRD05, R_PRD13, and R_PRD20 exhibit relatively larger positive coefficients (0.41, 0.33, and 0.41), suggesting 

behavior more akin to small-cap stocks, whereas R_PRD10 has a mildly negative size beta and is therefore closer 

to large-cap characteristics. Regarding the value factor (HML), assets such as R_PRD13, with a beta of 0.43, are 

exposed to value portfolio risk, while R_PRD10 has a very small negative value beta and shows little inclination 

toward value strategies. The R² values, ranging from 0.43 to 0.56, indicate that a substantial portion of the return 

variability of these stocks is explained by the Fama–French three factors. 

 

Figure 2. Distribution of daily returns of the market portfolio and selected assets (histograms of 

returns). 

Figure 2 illustrates the empirical distribution of returns for the market portfolio and several selected assets. The 

relatively high kurtosis and fat tails indicate deviations of returns from normality, which is consistent with the results 

of the Jarque–Bera tests reported in Chapter Four tables. Observing these features reinforces the necessity of 

employing tail-risk measures and Bayesian approaches such as the Black–Litterman model. Moreover, differences 

in distributional shapes across assets indicate risk heterogeneity, which plays a decisive role in optimal weight 

allocation. 
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Figure 3. Comparison of implied equilibrium returns derived from the Black–Litterman model with 

historical mean daily returns of selected stocks. 

Figure 3 shows the relationship between historical mean asset returns and implied equilibrium returns (π) 

computed based on market equilibrium and the variance–covariance matrix. The distance of most points from the 

45-degree line indicates that implied equilibrium returns do not necessarily coincide with historical means and are 

adjusted by the structure of systematic market risk. This result is consistent with the theoretical foundations of the 

Black–Litterman model, as π provides “normalized” returns aligned with market equilibrium and prevents overfitting 

to historical data. Observing these differences justifies the need to incorporate informed investor views in 

subsequent stages of the model. 

Table 5. Relative investor views based on Fama–French analysis 

View ID Superior Asset Inferior Asset Relative Expected Return (Q) 

1 R_PRD05 R_PRD14 0.0012 

2 R_PRD16 R_PRD17 0.0010 

3 R_PRD13 R_PRD11 0.0008 

4 R_PRD01 R_PRD19 0.0006 

5 R_PRD10 R_PRD20 0.0005 

 

Table 5 presents a set of five relative views formulated based on the results of Fama–French regressions and 

fundamental–factor analysis. In each row, one asset is defined as the “superior asset” and another as the “inferior 

asset,” with the relative expected return (Q) specified between the two. For example, the first view states that the 

expected return of R_PRD05 is assumed to be, on average, 0.0012 higher than that of R_PRD14, while in the 

second view R_PRD16 has a relative advantage of 0.0010 over R_PRD17. The corresponding values for the 

remaining pairs are 0.0008, 0.0006, and 0.0005 in the third to fifth views, respectively. This structure indicates that 

investor opinions are formulated as relative differences rather than absolute return levels, an approach consistent 

with the logic of the Black–Litterman framework and the literature on relative views. 

Table 6. Comparison of implied equilibrium returns and Black–Litterman posterior returns 

Asset Implied Equilibrium Return (π) BL Posterior Return Change 

R_PRD05 0.00105 0.00132 +0.00027 

R_PRD16 0.00098 0.00121 +0.00023 

R_PRD13 0.00072 0.00089 +0.00017 

R_PRD14 0.00041 0.00035 −0.00006 
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Table 6 compares implied equilibrium returns (π) with Black–Litterman posterior returns for selected assets and 

shows the changes resulting from combining investor views with market equilibrium. For stocks R_PRD05, 

R_PRD16, and R_PRD13, the BL posterior returns are 0.00132, 0.00121, and 0.00089, respectively, representing 

significant increases relative to their initial equilibrium returns (0.00105, 0.00098, and 0.00072), with positive 

changes of 0.00027, 0.00023, and 0.00017. These increases indicate that, in the presence of favorable views 

toward these assets, the Black–Litterman model adjusts equilibrium returns upward toward higher expectations. In 

contrast, for R_PRD14, the posterior return decreases from 0.00041 to 0.00035, reflecting a negative change of 

0.00006 and indicating weaker relative views or lower attractiveness of this stock compared with alternatives. 

 

Figure 4. Heatmap of market, size (SMB), and value (HML) beta coefficients for selected stocks based 

on the Fama–French three-factor regression. 

Figure 4 visually displays the heterogeneous pattern of stock sensitivities to the Fama–French factors. The color 

intensities show that most assets have positive and substantial betas with respect to the market factor, while 

responses to SMB and HML vary across stocks. This factor heterogeneity provides the basis for extracting relative 

investor views, as differences in factor loadings translate into differences in expected returns. Accordingly, this 

figure plays a key role in linking the Fama–French model to the Black–Litterman framework and in constructing the 

Q vector. 

Table 7. Portfolio weights under three different approaches 

Asset Markowitz BL without Views BL with Fama–French Views 

R_PRD01 0.04 0.05 0.06 

R_PRD05 0.07 0.08 0.11 

R_PRD10 0.06 0.06 0.05 

R_PRD16 0.08 0.09 0.12 

R_PRD20 0.03 0.02 0.02 
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Table 7 reports the portfolio weights for five selected assets under three different approaches: the classical 

Markowitz portfolio, the Black–Litterman model without views, and the Black–Litterman model with Fama–French–

based views. Under the Markowitz approach, the weights are relatively balanced and fall within the range of 0.03 

to 0.08; for example, the weight of R_PRD01 is 0.04, R_PRD05 is 0.07, and R_PRD16 is 0.08. In the Black–

Litterman specification without views, these weights are adjusted moderately such that R_PRD01 increases to 0.05, 

R_PRD05 to 0.08, and R_PRD16 to 0.09, indicating that combining market equilibrium with the risk structure 

strengthens, to some extent, the allocation to assets with higher implied equilibrium returns. In contrast, the weight 

of R_PRD20 declines from 0.03 to 0.02, which is consistent with its relatively lower equilibrium return. 

Table 8. Portfolio performance evaluation 

Performance Metric Markowitz BL without Views BL with Fama–French Views 

Cumulative Return 0.38 0.44 0.52 

Standard Deviation 0.19 0.17 0.16 

Sharpe Ratio 1.35 1.56 1.82 

Sortino Ratio 1.91 2.14 2.46 

Maximum Drawdown −0.26 −0.22 −0.18 
 

Table 8 compares the performance of the Markowitz portfolio, the Black–Litterman portfolio without views, and 

the Black–Litterman portfolio with Fama–French views using several key risk and return indicators. The cumulative 

returns for these three approaches are reported as 0.38, 0.44, and 0.52, respectively, indicating that incorporating 

the Black–Litterman equilibrium structure relative to Markowitz, and subsequently adding Fama–French–based 

views, progressively increases realized portfolio performance. At the same time, the standard deviation of returns 

declines from 0.19 in the Markowitz case to 0.17 in BL without views and further to 0.16 in BL with Fama–French 

views, reflecting a reduction in volatility risk. This pattern clearly suggests that the proposed framework not only 

improves returns but also enhances the overall risk profile. 

Risk-adjusted metrics further corroborate this assessment. The Sharpe ratios across the three approaches are 

1.35, 1.56, and 1.82, and the Sortino ratios are 1.91, 2.14, and 2.46, implying that the Black–Litterman portfolio with 

Fama–French views delivers the highest return per unit of total risk and downside risk. In addition, maximum 

drawdown decreases from −0.26 in Markowitz to −0.22 in BL without views and ultimately to −0.18 in BL with Fama–

French views, indicating better control over severe declines and prolonged loss episodes. Overall, Table 4–12 

provides strong quantitative evidence that adding a Fama–French layer to the Black–Litterman model yields a 

meaningful improvement in portfolio efficiency in terms of return, risk, and stability. 

 

Figure 5. Comparison of the cumulative return of the Black–Litterman portfolio with Fama–French 

views and the market-value benchmark portfolio. 
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Figure 5 compares the cumulative performance of the Black–Litterman portfolio with the market benchmark 

portfolio. The Black–Litterman portfolio generates higher cumulative returns than the market benchmark over most 

of the sample period, while its fluctuations remain controlled. This behavior indicates the effectiveness of integrating 

factor-analysis-based views into the asset allocation process. In particular, during periods of heightened volatility, 

the performance gap between the two portfolios narrows, underscoring the stabilizing role of the Bayesian 

framework in risk management. 

Table 9. Sensitivity analysis with respect to the τ parameter 

τ Value Portfolio Return Standard Deviation Sharpe Ratio 

0.01 0.48 0.17 1.74 

0.05 0.52 0.16 1.82 

0.10 0.50 0.16 1.79 

 

Table 9 reports the results of the model’s sensitivity analysis with respect to the τ parameter, which controls the 

degree of uncertainty about market equilibrium returns within the Black–Litterman framework. Three values of τ 

(0.01, 0.05, and 0.10) are examined, and the corresponding portfolio return, standard deviation, and Sharpe ratio 

are reported for each level. When τ = 0.01, the portfolio return is 0.48 and the standard deviation is 0.17, yielding a 

Sharpe ratio of 1.74. At τ = 0.05, the return increases to 0.52 and the standard deviation decreases to 0.16, with 

the Sharpe ratio rising to 1.82, the highest among the three scenarios. Finally, at τ = 0.10, the return decreases 

slightly to 0.50, the standard deviation remains unchanged, and the Sharpe ratio declines marginally to 1.79. 

Discussion and Conclusion 

The results of this study provide consistent and robust evidence that integrating systematically constructed, 

factor-based investor views into the Black–Litterman framework leads to meaningful improvements in portfolio 

performance across multiple dimensions. Empirically, the portfolios constructed under the Black–Litterman 

specification with Fama–French–based views exhibit higher cumulative returns, lower volatility, superior risk-

adjusted performance, and reduced downside risk compared with both the classical Markowitz portfolio and the 

Black–Litterman model without views. These findings confirm the central theoretical proposition of the Black–

Litterman approach: anchoring expected returns to market equilibrium and then adjusting them through informed 

views yields more stable and economically coherent portfolios than relying on historical estimates alone (3, 4). 

One of the most salient empirical observations is the conservative nature of the implied equilibrium returns 

relative to historical mean returns. Across most assets, the equilibrium returns derived through reverse optimization 

are lower than their historical averages, which prevents excessive optimism and extreme portfolio weights. This 

result is fully aligned with prior research emphasizing that the equilibrium component of the Black–Litterman model 

acts as a regularization mechanism, shrinking return estimates toward values that are consistent with the covariance 

structure and the representative investor’s risk aversion (12, 17). The present findings reinforce the argument that 

much of the instability observed in traditional mean–variance portfolios stems from noisy return estimates rather 

than from the optimization process itself. 

The incorporation of factor-based views further refines this equilibrium anchoring by selectively adjusting 

expected returns in directions supported by asset pricing evidence. In this study, investor views derived from the 

Fama–French three-factor model systematically favor assets with stronger exposure to rewarded risk factors, while 

penalizing assets with weaker or unfavorable factor loadings. The resulting posterior returns reflect a balanced 
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synthesis of market consensus and factor-informed expectations. This mechanism explains why assets identified 

as superior in relative terms experience upward adjustments in expected returns, whereas less attractive assets 

either receive smaller weights or experience downward revisions. Similar dynamics have been documented in 

studies that combine factor models with Black–Litterman optimization, showing that factor-informed views can 

enhance both interpretability and performance (7, 9). 

The observed improvement in risk-adjusted performance, as measured by the Sharpe and Sortino ratios, is 

particularly noteworthy. While higher cumulative returns are desirable, the simultaneous reduction in standard 

deviation and maximum drawdown indicates that performance gains are not achieved at the expense of increased 

risk. Instead, the Black–Litterman framework with factor-based views appears to reallocate risk more efficiently 

across assets, reducing exposure to extreme losses and prolonged drawdowns. This outcome is consistent with 

earlier empirical evidence suggesting that Bayesian portfolio optimization frameworks are better suited to managing 

estimation risk and tail risk than classical approaches (5, 13). 

From a structural perspective, the results underscore the importance of expressing investor views in relative 

rather than absolute terms. By formulating views as expected return differentials between asset pairs, the model 

avoids the need to specify absolute return forecasts, which are notoriously difficult to estimate accurately. Relative 

views are inherently more robust and align well with the comparative nature of factor analysis, where assets are 

evaluated based on their exposure to systematic drivers of return. Prior methodological contributions emphasize 

that relative views are particularly effective in the Black–Litterman setting because they preserve the internal 

consistency of the equilibrium structure while allowing meaningful deviations where justified (3, 4). 

The sensitivity analysis with respect to the τ parameter further enriches the interpretation of the results. The 

empirical findings demonstrate that intermediate values of τ achieve the most favorable trade-off between return 

and risk, yielding the highest Sharpe ratio. This confirms the theoretical role of τ as a scaling parameter that governs 

the confidence placed in equilibrium returns. When τ is too small, the model places excessive weight on the prior 

equilibrium, limiting the influence of investor views; when τ is too large, views dominate and may reintroduce 

instability. Similar conclusions have been reported in simulation-based and empirical studies that stress the 

importance of calibrating τ carefully rather than adopting arbitrary default values (12, 18). 

Comparing the results of this study with prior empirical applications reveals a high degree of consistency, 

particularly in emerging market contexts. Studies conducted in markets such as India, Eastern Europe, and Latin 

America report that Black–Litterman portfolios enriched with systematic information outperform both market 

benchmarks and traditional optimized portfolios (1, 10, 11). The present findings extend this evidence by 

demonstrating that even within a relatively volatile and information-constrained environment, disciplined view 

construction based on asset pricing theory can significantly enhance portfolio efficiency. 

Moreover, the results contribute to the growing literature that positions the Black–Litterman model as a flexible 

integration platform rather than a static optimization tool. Recent research highlights the model’s capacity to 

incorporate diverse information sources, ranging from econometric forecasts to machine learning outputs and 

ordinal expert assessments (15, 16). While the present study focuses on factor-based views, the empirical success 

of this approach supports the broader claim that the Bayesian structure of the Black–Litterman model is well suited 

to synthesizing heterogeneous signals into coherent portfolio decisions. 

The findings also resonate with studies that emphasize the role of equilibrium consistency in enhancing portfolio 

stability during turbulent market conditions. The reduced maximum drawdown and smoother cumulative 
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performance trajectory observed in the Black–Litterman portfolio with views suggest that the Bayesian updating 

mechanism dampens the impact of short-term market shocks. This stabilizing effect has been documented in prior 

research employing conditional information, regime-switching dynamics, and volatility-adjusted views, all of which 

leverage the same fundamental principle of probabilistic belief updating (6, 14). The present study adds to this body 

of evidence by showing that even relatively simple factor-based views can produce similar stabilizing benefits. 

Taken together, the results confirm that the value of the Black–Litterman framework lies not only in its 

mathematical elegance but also in its ability to reconcile market equilibrium with economically grounded 

expectations. By embedding asset pricing insights into the view-generation process, the proposed approach 

addresses a key criticism of traditional Black–Litterman implementations, namely their reliance on ad hoc or opaque 

views. This structured integration enhances both the transparency and the empirical performance of the resulting 

portfolios, thereby strengthening the practical relevance of the model for contemporary investment management (5, 

8). 

Despite its contributions, this study is subject to several limitations. The empirical analysis is confined to a specific 

equity market and a defined sample period, which may limit the generalizability of the findings to other markets or 

asset classes. In addition, the factor structure employed is restricted to the three-factor Fama–French model, which, 

while widely accepted, may not fully capture all relevant sources of systematic risk. Finally, the analysis assumes 

stable factor relationships over time, an assumption that may be challenged during periods of structural change or 

extreme market stress. 

Future research could extend the present framework in several directions. First, incorporating additional factors, 

such as momentum, profitability, or investment factors, may provide a richer basis for view construction. Second, 

applying the proposed methodology to multi-asset portfolios, including bonds, commodities, and alternative 

investments, would enhance its external validity. Third, dynamic implementations that allow factor loadings and 

views to evolve over time could offer deeper insights into the interaction between market regimes and Bayesian 

portfolio optimization. 

From a practical standpoint, the findings suggest that portfolio managers should move beyond purely historical 

estimates and subjective forecasts when forming expectations about asset returns. Implementing a structured 

Black–Litterman framework with factor-based views can improve both performance and risk control, particularly in 

volatile markets. Practitioners are encouraged to express views in relative terms, carefully calibrate uncertainty 

parameters, and routinely evaluate sensitivity to key assumptions in order to achieve robust and transparent 

portfolio outcomes. 

Acknowledgments 

We would like to express our appreciation and gratitude to all those who helped us carrying out this study. 

Authors’ Contributions 

All authors equally contributed to this study. 

Declaration of Interest 

The authors of this article declared no conflict of interest. 



 Soltanabadi et al. 

14 
Ethical Considerations 

All ethical principles were adheried in conducting and writing this article. 

Transparency of Data 

In accordance with the principles of transparency and open research, we declare that all data and materials used 

in this study are available upon request. 

Funding 

This research was carried out independently with personal funding and without the financial support of any 

governmental or private institution or organization. 

References 

1. Fernandes B, Street A, Fernandes C, Valladão D. On an adaptive Black-Litterman investment strategy using conditional 

fundamentalist information: A Brazilian case study. Finance Research Letters. 2018;27:201-7. doi: 10.1016/j.frl.2018.03.006. 

2. Rostami G, Godazgar, Zahra. Optimal Asset Allocation Using the Cyclical Behavior of Commodities: A Regime-

Switching Approach. Asset Management and Financing. 2022;10(4):25-46. 

3. Meucci A. The Black-Litterman approach: original model and extensions.  The Encyclopedia of Quantitative Finance 

(Wiley)2008. p. 212-9. 

4. Idzorek TM. A step-by-step guide to the Black-Litterman model.  Proceedings of the CFA Institute Conference2007. 

5. Blum P, Staub R. Black-Litterman and beyond: The Bayesian paradigm in investment management. Journal of Asset 

Management. 2022;23(1):16-30. doi: 10.1057/s41260-021-00228-0. 

6. Beach SL, Orlov AG. An application of the Black-Litterman model with EGARCH-M-derived views for international 

portfolio management. Financial Markets and Portfolio Management. 2007;21(2):147-66. doi: 10.1007/s11408-007-0050-x. 

7. Xie W, Huang Z, Zhang D. Constructing factor-bearing portfolios based on the Black-Litterman model. Systems 

Engineering - Theory & Practice. 2023;43(2):291-303. doi: 10.12011/SETP2022-1743. 

8. Chen R, Yeh SK, Zhang X. On the Black-Litterman model: Learning to do better. Journal of Financial Data Science. 

2022;4(3):66-88. doi: 10.3905/jfds.2022.1.096. 

9. Basak GK, Pavlovych V, Pavlovych W, Shakun I. Portfolio selection by Black-Litterman model for Lviv IT cluster. 

Financial Markets, Institutions and Risks. 2021;5(1):80-7. doi: 10.21272/fmir.5(1).80-87.2021. 

10. Maji D, Paul M. A Black-Litterman asset allocation model for the Indian stock market. IIMB Management Review. 

2021;33(2):158-69. doi: 10.1016/j.iimb.2021.02.005. 

11. Pakbazkatij M, Farid D, Mirzaei HR. Providing a Fundamental Framework for the Black-Litterman Optimization Model 

and Comparing Its Performance with Existing Models. Financial Management Strategy. 2022;10(38):77-94. 

12. Chen Y, Lim A. Managing estimation errors in the Black-Litterman model. Quantitative Finance. 2020;20(12):2093-

110. doi: 10.1080/14697688.2020.1733438. 

13. Teplova T, Mikova E, Munir Q, Pivnitskaya N. Black-Litterman model with copula-based views in mean-CVaR portfolio 

optimization framework with weight constraints. Economic Change and Restructuring. 2023;56(1):515-35. doi: 

10.1007/s10644-022-09435-y. 

14. Flández S, Rubilar-Torrealba R, Chahuán-Jiménez K, de la Fuente-Mella H, Elórtegui-Gómez C. Black-Litterman 

portfolio optimization with dynamic CAPM via ABC-MCMC. Mathematics. 2025;13(20):3265-. doi: 10.3390/math13203265. 

15. Çela E, Hafner S, Mestel R, Pferschy U. Integrating multiple sources of ordinal information in portfolio optimization. 

Annals of Operations Research. 2025;346(1):1967-95. doi: 10.1007/s10479-025-06495-x. 

16. Ko H, Lee J. Portfolio management transformed: An enhanced Black-Litterman approach integrating asset pricing 

theory and machine learning. Computational Economics. 2025;66:3841-87. doi: 10.1007/s10614-024-10760-9 

10.1007/s10614-025-10892-6. 

17. Sankaran SS, Martin D. Outperforming without forecasting: Revisiting the Black-Litterman asset allocation model. The 

Journal of Wealth Management. 2021;24(2):53-62. doi: 10.3905/jwm.2021.1.144. 



Volume 4, Issue 1 

15 

 

18. Subekti R, Abdurakhman, Rosadi D. A short review over twenty years on the Black-Litterman model in portfolio 

optimization. Industrial Engineering & Management Systems. 2021;20(4):769-81. doi: 10.7232/iems.2021.20.4.769. 

 


