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ABSTRACT 

Modern Portfolio Theory, with the introduction of the mean-variance model, established the first theoretical framework for portfolio selection. 

While the mean-variance model is widely used as the foundation for a broad range of problems in this field, it is criticized by researchers for 

its high sensitivity to input parameters and its tendency to select concentrated portfolios. To address these shortcomings, this research 

introduces the Robust Mean-Variance Entropy model. The Robust Mean-Variance Entropy model seeks to control the risk arising from 

estimation error by employing robust optimization. Furthermore, by incorporating Yager's entropy as a diversification measure, it aims to 

increase the diversification of the optimal portfolio by preventing concentrated allocations. The proposed model, which has a multi-period 

structure, was studied over an 18-month period, and its performance was evaluated and validated using historical data from the top 20 stocks 

of the S&P 500 index. When compared to an equally weighted portfolio, the results of the Robust Mean-Variance Entropy model show that 

while achieving high returns that were very close to its counterpart, the model demonstrated impressive performance in terms of risk 

management, effectively protecting its underlying capital during market downturns. 

Keywords: Portfolio Optimization, Robust Optimization, Diversification Measure, Multi-Period Approach 

 

Introduction 

The theory and practice of portfolio optimization have undergone profound transformations since the seminal 

introduction of Modern Portfolio Theory (MPT) by Markowitz, which formalized the mean–variance paradigm as a 

rational framework for balancing expected return and risk (1). Despite its enduring influence, the classical mean–

variance model has been persistently criticized for its extreme sensitivity to input parameters, especially expected 

returns and covariances, leading to unstable and highly concentrated portfolios that perform poorly out-of-sample 

(2). This phenomenon, often described as “error maximization,” emerges because small perturbations in estimated 

means can produce disproportionately large changes in optimal weights, thereby undermining the reliability of the 

solution (3). Empirical research has shown that naïve diversification strategies such as the equally weighted 1/N 

portfolio frequently outperform optimized portfolios when estimation error is substantial, raising serious questions 

about the practical superiority of sophisticated optimization models (2). These concerns have motivated a rich 

stream of research devoted to enhancing robustness, improving diversification, and extending portfolio models to 

more realistic multi-period settings. In parallel, the rapid growth of financial data, algorithmic trading, and AI-based 

analytics has intensified the need for models that integrate predictive intelligence with structural resilience (4). 
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Consequently, contemporary portfolio research increasingly seeks to reconcile three objectives: statistical 

robustness, diversification enhancement, and dynamic adaptability under uncertainty. 

A central response to estimation risk has been the development of robust optimization frameworks. The 

foundational work of Ben-Tal and Nemirovski introduced robust counterparts to linear programming problems 

contaminated with uncertain data, providing tractable solutions that remain feasible across predefined uncertainty 

sets (5). Subsequent theoretical advancements established robust optimization as a comprehensive methodology 

for decision-making under parameter ambiguity, emphasizing its computational tractability and structural elegance 

(6). In portfolio contexts, robust approaches modify the mean–variance framework by allowing expected returns or 

covariance parameters to vary within uncertainty sets, thereby protecting the solution against adverse deviations 

(3). The “price of robustness” concept formalizes the trade-off between performance and protection, demonstrating 

that moderate conservatism can significantly stabilize portfolio allocations without excessive sacrifice of expected 

return (3). Robust multiperiod portfolio management models further incorporate transaction costs and temporal 

dependencies, illustrating how dynamic robust allocation strategies outperform static ones in volatile environments 

(7). These theoretical contributions have been complemented by empirical applications in emerging and small 

markets, where robust maximum diversification strategies have shown superior resilience under thin liquidity and 

structural constraints (8). Collectively, the robust optimization literature provides a mathematically rigorous 

foundation for mitigating estimation risk, yet it does not automatically guarantee diversified allocations unless explicit 

diversification measures are embedded in the objective structure. 

Diversification, traditionally interpreted as the reduction of unsystematic risk through asset spreading, has 

increasingly been operationalized using entropy-based measures and alternative concentration metrics. Shannon 

entropy and related information-theoretic constructs have been employed to penalize weight concentration and 

encourage uniform capital distribution (9, 10). However, entropy-based diversification must be carefully balanced 

against risk-return objectives to avoid mechanical equal weighting. Recent research has highlighted the importance 

of integrating diversification measures directly into optimization formulations to prevent corner solutions (11). In 

small and frontier markets, diversification constraints significantly improve stability and risk-adjusted performance, 

especially when combined with robust return modeling (8). Furthermore, behavioral finance research suggests that 

regret aversion and other cognitive biases influence portfolio concentration tendencies, underscoring the need for 

structural diversification mechanisms that counteract human overconfidence and herding effects (12, 13). In 

cryptocurrency markets, credibilistic CVaR-based allocation under practical constraints demonstrates that 

diversification remains crucial even in highly volatile digital asset classes (14). These developments indicate that 

diversification is not merely a heuristic principle but a quantifiable design objective requiring explicit modeling 

attention within optimization frameworks. 

Parallel to robustness and diversification advances, multi-period portfolio optimization has gained renewed 

prominence due to the dynamic nature of financial markets. Early recursive formulations and dynamic programming 

approaches laid the groundwork for multiperiod extensions of the mean–variance paradigm (7). More recently, 

bibliometric analyses reveal a rapid expansion of multiperiod portfolio research, emphasizing scenario-based 

modeling, stochastic programming, and practical constraints integration (15). Real-world portfolio management 

involves transaction costs, rebalancing policies, and budget uncertainty, all of which necessitate multistage 

modeling frameworks (16, 17). Scenario-based planning under budget uncertainty illustrates how multistage 

optimization improves allocation stability in complex logistical and financial systems (17). Moreover, regret-based 
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stochastic portfolio models demonstrate that volatility-sensitive risk measures can be embedded within dynamic 

structures to enhance adaptability (18). These approaches collectively emphasize that static single-period 

optimization inadequately reflects practical investment realities, where portfolios are continually revised in response 

to new information and evolving risk conditions. 

The integration of artificial intelligence and machine learning has further transformed portfolio optimization. 

Machine learning algorithms enhance return forecasting accuracy and facilitate risk-adjusted optimization in 

complex markets such as cryptocurrencies (19). Time-series forecasting combined with machine learning 

techniques has been shown to improve dynamic asset allocation decisions, particularly when embedded within 

structured optimization models (20). Reinforcement learning frameworks optimize portfolio selection through 

iterative stock ranking and adaptive decision rules, bridging predictive analytics and optimization control (21). AI-

driven portfolio evaluation frameworks extend beyond traditional variance-based metrics, incorporating alternative 

performance indicators and nonlinear risk assessments (4). At the same time, ESG constraints have introduced 

additional structural dimensions to portfolio design, requiring optimization models to balance sustainability 

objectives with financial efficiency (22). Entropy-based fuzzy optimization models further demonstrate how 

information uncertainty can be integrated into portfolio selection under ambiguous data environments (10). These 

technological and methodological innovations underscore a paradigm shift: portfolio optimization is evolving from 

purely statistical mean–variance trade-offs toward hybrid intelligent systems combining robustness, diversification, 

and predictive analytics. 

Despite these advancements, a conceptual gap persists at the intersection of robust optimization, entropy-based 

diversification, and multiperiod dynamic modeling. While robust linear programming under uncertainty sets 

addresses parameter ambiguity (5), and budgeted uncertainty improves tractability (3), few studies systematically 

integrate entropy-based diversification into a robust multiperiod mean–variance structure. Furthermore, empirical 

evidence comparing optimized portfolios with naïve benchmarks suggests that structural improvements must 

translate into tangible out-of-sample resilience to justify model complexity (2). Recent applications across stock 

markets and alternative asset classes confirm that combining robust risk measures, diversification metrics, and 

practical constraints enhances stability and risk-adjusted performance (8, 14). However, the literature lacks a unified 

framework that simultaneously controls estimation error, enforces diversification via entropy, accommodates 

transaction costs, and operates within a repeated multiperiod structure informed by contemporary predictive insights 

(4, 19). Addressing this gap requires synthesizing robust optimization theory (6), entropy-based diversification 

principles (11), multiperiod dynamic modeling (15), and behavioral and practical constraints (12). 

Therefore, the aim of this study is to develop and empirically evaluate a robust multi-period mean–variance 

portfolio optimization model that integrates entropy-based diversification and budgeted uncertainty mechanisms, 

and to compare its out-of-sample performance against a naïve benchmark under realistic transaction cost 

conditions. 

Methods and Materials 

Given the problem definition and solution approach of this study, the research is classified as analytical and 

developmental. Furthermore, as it utilizes historical data of selected stocks, this research falls into the category of 

retrospective studies. On the other hand, considering the expected objectives, developing a mathematical model 
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for the portfolio optimization problem and investigating performance improvements and comparing results, this 

research can be described as outcome-oriented. 

The asset universe in this research consists of 20 selected stocks with the highest market capitalization from the 

S&P 500 index, covering an 18-month period. The selected companies' stocks are from various industrial groups 

to partially mitigate the impact of unsystematic risk. 

To better illustrate the relationships between the stocks, their correlation matrix has been calculated and is 

displayed in Figure 1. A closer look at Figure 1 reveals a high correlation coefficient among the stocks with the 

highest market capitalization, indicating a similar pattern of return fluctuations among them. 

 

Figure 1. Heatmap Correlation 

The mean-variance model is a quadratic multi-objective optimization model comprising two objective functions—

return and risk—and a budget constraint. In this model, x i, the decision variable, represents the weight allocated 

to stock i in the portfolio. Additionally, μ i is the mean return of each stock, and 𝐶𝑜𝑣𝑖,𝑗 is the covariance between 

stocks 𝑖 and 𝑗. The basic mean-variance model is as follows: 

(1) ∑ 𝑥𝑖𝜇𝑖

𝑛

𝑖=1

− ∑ ∑ 𝑥𝑖𝑥𝑗𝐶𝑜𝑣𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 Maximize: 

  s.t 

(2) ∑ 𝑥𝑖

𝑛

𝑖=1

= 1  

(3) 𝑥𝑖 ≥ 0 ; ∀𝑖 = 1, . . . , 𝑛  

In Equation 1, the first term calculates the portfolio return, and the second term calculates the portfolio risk. 

Equation 2, known as the budget constraint, ensures that the sum of allocated weights and participation in the 

portfolio is at most 100%. Equation 3 indicates the non-negativity requirement for (i.e., no short selling), and n 

represents the number of stocks. Subsequently, we develop the above basic model by incorporating the 

considerations mentioned in the research background. 
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Applying upper and lower bound constraints (Equation 4) to the problem eliminates the possibility of allocating 

very small values to 𝑥𝑖. Small values of 𝑥𝑖 not only have a negligible impact on portfolio performance but also impose 

higher transaction costs on the model and portfolio. 

Additionally, when constructing a portfolio, controlling the permissible number of stocks to be selected is crucial. 

The more stocks present in the portfolio, the more complex the process of monitoring and evaluating portfolio 

performance becomes, and the longer the decision-making time for necessary actions. Therefore, a cardinality 

constraint (Equation 5) is used to define the minimum and maximum allowable number of stocks in the portfolio. 

(4) 𝐿𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖𝑦𝑖  ;  ∀𝑖 = 1, . . . , 𝑛 
 

(5) 𝐶𝑀𝑖𝑛 ≤ ∑ 𝑦𝑖 ≤  𝐶𝑀𝑎𝑥  

𝑛

𝑖=1

;  ∀𝑖 = 1, . . . , 𝑛 
 

In the above expressions, 𝑈𝑖 and 𝐿𝑖 represent the maximum and minimum weights allocatable to 𝑥𝑖, respectively; 

𝐶𝑀𝑖𝑛 is the minimum number of stocks, and 𝐶𝑀𝑎𝑥 is the maximum number of stocks allowed in the portfolio. 

Additionally, 𝑦𝑖 is a binary variable that equals 1 if a weight is allocated to the 𝑖-th stock and 0 otherwise. 

To more accurately model real-world problems, the costs of buying and selling each stock, referred to as 

commissions or transaction costs, can be incorporated into the portfolio optimization problem. A common method 

for adding a transaction cost function to the model is to deduct a fixed percentage of the total weight allocated to 

each stock, rather than deducting a monetary cash amount. Assuming the fixed commission percentage is 𝑇𝐶, the 

transaction cost function for stock 𝑖 is as follows: 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠 = ∑ 𝑇𝐶𝑥𝑖

𝑛

𝑖=1

 (6) 

Given the points discussed in the research background chapter, if the mean return of any stock deviates from its 

assumed deterministic value in the base model, the obtained solution may no longer be optimal or even feasible. 

To address such conditions, the mean return of each stock can be considered an uncertain parameter in the model. 

In this research, stock returns are considered the uncertain parameters of the problem and are modeled using a 

budgeted uncertainty set of the form [𝜇𝑖 − 𝑑𝑖 , 𝜇𝑖 + 𝑑𝑖]. In this set, 𝜇𝑖 is the calculated mean return and 𝑑𝑖 is the 

maximum permissible deviation from the mean. 

The primary goal of portfolio selection is to achieve maximum possible return. However, if the performance of 

one or more stocks does not meet expectations, the entire portfolio must be reviewed. Portfolio review can be 

conducted at fixed intervals, during which the weights of stocks in the portfolio are adjusted, increased or decreased, 

according to their performance in each period. To achieve this, the problem model must be extended to a multi-

period state by implementing certain modifications and adding relevant and necessary constraints. 

Generally, multi-period models involve two common approaches: 1) Repeated Optimization and 2) Portfolio 

Rebalancing. In the repeated optimization approach, at the beginning of each period, the problem is solved again 

using new and updated data, without considering the portfolio obtained in the previous period. In this case, there is 

no guarantee of similarity between the portfolio in each period and the previous one, and not only the allocated 

weight composition but also the optimal stock composition may change entirely. Additionally, if the changes applied 

to the optimal portfolio at the beginning of each period are extensive, transaction costs will increase proportionally. 
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In the second approach, however, the goal is to maintain the proportionality of the weights allocated in the initial 

period. In other words, as the price of each stock in the portfolio changes, the portfolio's value also changes, causing 

the percentage participation of each stock to increase or decrease compared to the beginning of the period. To 

preserve the initial period weights throughout the investment horizon, a portion of the stocks that have appreciated 

and whose weights in the portfolio have increased must be sold, while a specific percentage of stocks that have 

experienced price declines must be purchased, so that the portfolio's weight composition remains constant. In this 

approach, due to generally lower trading volumes, transaction costs are significantly lower compared to the first 

approach. 

In the first approach, since the optimization problem is solved based on the latest available information on each 

stock's performance, there is an opportunity to improve portfolio performance by considering stocks with higher 

growth potential. Therefore, in this research, the multi-period structure of the problem is modeled using the first 

approach, i.e., repeated optimization. Furthermore, the concept of entropy, which was previously examined in detail, 

will influence portfolio performance within the multi-period model structure. 

Given the nonlinear nature of the Yager entropy mathematical relation and the transaction cost function after 

considering the multi-period structure, we first introduce and rewrite the linear form of each, then formulate the final 

problem model. The table below shows the linear form of each case along with the necessary auxiliary constraints 

for linearizing the expressions. 

Table 1. Linear vs. Non-Linear formulations in Model 

Linearized Formulation Non-Linear 

∑ 𝑻𝑪𝒗𝒕,𝒊

𝒏

𝒊=𝟏

 

s.t 

𝒗𝒕,𝒊 ≥ 𝒙𝒕,𝒊 − 𝒙𝒕−𝟏,𝒊 

𝒗𝒕,𝒊 ≥ −(𝒙𝒕,𝒊 − 𝒙𝒕−𝟏,𝒊) (7) 

 

∑ 𝑇𝐶|𝑥𝑡,𝑖 − 𝑥𝑡−1,𝑖|

𝑛

𝑖=1

 

∑ 𝒔𝒕,𝒊 

s.t 

𝒔𝒕,𝒊 ≥ 𝒙𝒕,𝒊 −
𝟏

𝒏
 

𝒔𝒕,𝒊 ≥ −(𝒙𝒕,𝒊 −
𝟏

𝒏
) (9) 

∑ |𝑥𝑡,𝑖 −
1

𝑛
| (8) 

 

 

Minimize: λ ∑ ∑ 𝑥𝑡,𝑖𝑥𝑡,𝑗𝐶𝑜𝑣𝑡,𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ (1 − 𝜆) ∑ 𝑠𝑡,𝑖

𝑛

𝑖=1

 (10) 

s.t   

 ∑ 𝜇𝑡,𝑖𝑥𝑡,𝑖

𝑛

𝑖=1

− (𝑧Γ + ∑ 𝑝𝑡,𝑖

𝑛

𝑖=1

) − ∑ 𝑇𝐶𝑣𝑡,𝑖

𝑛

𝑖=1

≥ 𝜇0 (11) 

 ∑ 𝑥𝑡,𝑖

𝑛

𝑖=1

= 1 (12) 
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 𝐿𝑖𝑦𝑡,𝑖 ≤ 𝑥𝑡,𝑖 ≤ 𝑈𝑖𝑦𝑡,𝑖  ; ∀𝑡 (13) 

 𝐶𝑀𝑖𝑛  ≤ ∑ 𝑦𝑡,𝑖

𝑛

𝑖=1

≤ 𝐶𝑚𝑎𝑥 (14) 

 𝑧 + 𝑝𝑡,𝑖 ≥  𝑑𝑖𝑥𝑡,𝑖  ; ∀𝑖 (15) 

 𝑠𝑡,𝑖 ≥ 𝑥𝑡,𝑖 −
1

𝑛
 (16) 

 𝑠𝑡,𝑖 ≥ −(𝑥𝑡,𝑖 −
1

𝑛
) (17) 

 𝑣𝑡,𝑖 ≥ 𝑥𝑡,𝑖 − 𝑥𝑡−1,𝑖 (18) 

 𝑣𝑡,𝑖 ≥ −(𝑥𝑡,𝑖 − 𝑥𝑡−1,𝑖) (19) 

 𝑥𝑡,𝑖 , 𝑧, 𝑝𝑡,𝑖 , 𝑠𝑡,𝑖 , 𝑣𝑡,𝑖 ≥ 0 ; ∀𝑖 (20) 

 𝑦𝑡,𝑖 ∈ {0,1} ; ∀𝑖 (21) 

In the final model, 𝑥𝑡,𝑖 is the weight of stock 𝑖 in period 𝑡, 𝑡 is the time period index in the range 𝑡 =  1, … , 𝑇, 𝜇𝑡,𝑖 is 

the return of stock 𝑖 in period 𝑡, 𝜇0 is the minimum expected return, 𝑣𝑡,𝑖 is an auxiliary variable for transaction costs, 

𝑠𝑡,𝑖 is an auxiliary variable for Yager entropy, 𝜆 is the parameter representing the importance coefficient of the dual 

objectives (risk and entropy) in the problem's objective function, Γ is the tuning parameter for the uncertainty budget 

and the degree of the problem's uncertainty, 𝑝𝑡,𝑖 and 𝑧 are dual variables associated with robust optimization. 

Findings and Results 

In this section, we first report the numerical results of the optimal portfolios for each period by solving the 

proposed model of this research. Subsequently, by defining a benchmark model as a reference, we evaluate the 

performance of the proposed model in comparison to the benchmark model. 

Given the multi-period structure of the problem in this research, the investment horizon is divided into three parts. 

In period zero (the initial period), an optimal portfolio is formed. Then, to improve its performance in line with market 

and stock price changes, through two consecutive periods and using the repeated optimization approach, a new 

optimal portfolio is formed by updating the available data for each stock, and its performance is evaluated using 

out-of-sample data. 

4.1 Optimal Portfolios 

As explained, to understand and evaluate the performance of this research's proposed model, we need to 

compare the obtained results with a benchmark or reference model. In the field of portfolio optimization, one of the 
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most common and well-known benchmark models is the Equal-Weight Portfolio, first introduced by DeMiguel et al. 

(2009). This portfolio represents a simple yet highly effective strategy, and in the majority of cases, outperforming 

it is a very difficult task. This strategy, also known as the Naive Portfolio or 1/𝑛, allocates equal weight to all available 

stocks and often demonstrates significantly better performance than more complex models. In this research, this 

portfolio (strategy) is used to compare the performance of the proposed model. In the remainder of this research, 

we refer to our proposed model, fully introduced at the end of Chapter Three, as the "Robust Mean-Variance Entropy 

Model" or, abbreviated, GRMVE. Table 2 shows the optimal portfolio for each period. 

Table 2. Optimal Portfolios by Period 

Stock GRMVE Model Naive (
𝟏

𝒏
) 

Period 0 Period 1 Period 2 

NVDA 0.00000 0.00000 0.05000 0.05 

MSFT 0.05000 0.05000 0.06061 0.05 

AAPL 0.07558 0.07766 0.07545 0.05 

GOOG 0.06621 0.06035 0.06064 0.05 

AMZN 0.05000 0.05000 0.05885 0.05 

META 0.05000 0.05000 0.05000 0.05 

AVGO 0.05000 0.05000 0.04735 0.05 

TSLA 0.00000 0.00000 0.00000 0.05 

BRK-B 0.09832 0.09922 0.10372 0.05 

WMT 0.09912 0.10217 0.08789 0.05 

JPM 0.07336 0.07483 0.07464 0.05 

ORCL 0.05000 0.05000 0.05137 0.05 

V 0.08003 0.09992 0.09992 0.05 

LLY 0.05000 0.05016 0.05016 0.05 

MA 0.05000 0.05000 0.00000 0.05 

NFLX 0.00000 0.00000 0.05000 0.05 

XOM 0.08043 0.08569 0.00000 0.05 

COST 0.07695 0.05000 0.07939 0.05 

PLTR 0.00000 0.00000 0.00000 0.05 

JNJ 0.00000 0.00000 0.00000 0.05 

 

Figure 2 has been plotted to better visualize the results obtained in Table 2 and to illustrate the capital allocation 

among the selected stocks in the optimal portfolio for each period. By examining the structure of the portfolio in 

each period, one can observe the high diversity of stocks in each. On the other hand, the high similarity between 

the selected stocks and their optimal weights in the portfolio of one period compared to the next indicates the 

stability of the GRMVE model in the portfolio optimization process. The result of this stability is lower transaction 

costs due to smaller volumes of changes resulting from buying and selling stocks at the beginning of each period. 

The main changes made in the structure of the portfolio in the second period include the addition of stocks from 

companies NVDA and NFLX, and the removal of MA and XOM. 
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Figure 2. Asset Allocation of GRMVE Model 

One of the important components incorporated into the mathematical model of this research is Yager Entropy as 

a diversification metric. A key point regarding the Equal-Weight (1/𝑛) portfolio is the maximum achievable 

diversification by this strategy. However, the main question can be posed as follows: To what extent is Yager entropy 

capable of creating diversification within the optimal portfolio structure? To answer this question, Figure 3 is plotted 

to compare the diversification level of the optimal portfolios resulting from the GRMVE model with the Equal-Weight 

(1/𝑛) portfolio, thereby enabling the evaluation of this diversification metric's performance. 

 

Figure 3. Portfolio concentration Comparison using HHI 

The results displayed in Figure 3 are calculated using the HHI (Herfindahl-Hirschman Index). This index is a 

standard and widely used method for measuring the degree of diversification within a portfolio or the level of 

concentration in a portfolio or market. The obtained HHI index results lie within the range [1/n, 1]. Lower values 

indicate greater diversification, while higher HHI values signify investment concentration and allocated weight in a 

small number of stocks. An HHI index equal to 1 means the entire capital is allocated to a single stock, or in other 

words, a single-asset portfolio. The HHI index is calculated as follows: 

𝐻𝐻𝐼 = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 (22) 
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Based on Figure 3 and the very close HHI values of the GRMVE model portfolios and the equal-weight portfolio, 

it can be concluded that Yager entropy performs excellently in reducing investment concentration, increasing 

portfolio diversification, and achieving results very close to the 1/𝑛 state. 

4.2 Out-of-Sample Return and Performance 

Following the examination and analysis of the structural characteristics of the GRMVE model in the previous 

section, this section aims to evaluate the performance of this research's proposed model on out-of-sample data. 

Table 3 presents the numerical results of each model's performance on the out-of-sample data, which forms the 

basis for the subsequent analyses. 

Table 3. Out-of-Sample Performance 

Month GRMVE Model  (
𝟏

𝒏
 )Naive  

JAN 0.0487 0.043 

FEB 0.0073 -0.0062 

MARCH -0.0657 -0.0724 

APRIL 0.0117 0.0444 

MAY 0.0648 0.0779 

JUNE 0.0551 0.0529 

Given the multi-period structure of the problem, the temporal division of data is as follows: the initial 12 months 

for period zero, and two consecutive 2-month periods for periods one and two. Consequently, the performance of 

each optimal portfolio has been recorded and reported over the 2 months following its formation. 

During this 6-month interval, as per Table 4, the GRMVE model and the equal-weight portfolio achieved total 

returns of 12.19% and 13.96%, respectively. Despite the better overall performance of the equal-weight portfolio, a 

notable point is the manner in which this return was achieved and the trajectory followed by this strategy. According 

to Table 4, the number of negative return months for the equal-weight portfolio is 2, whereas the GRMVE model 

had a negative return only in the third month. This is highly significant from a risk management perspective and 

indicates the GRMVE model's ability to preserve capital under coverage. 

To achieve a comprehensive comparison of the GRMVE model's performance with the equal-weight portfolio, 

this section introduces two widely used metrics that are highly effective for precise evaluation of these two 

approaches. If we wish to analyze the risk-return ratio of an investment, we can utilize two performance metrics: 

the Sharpe Ratio (Sharpe, 1966) and the Sortino Ratio (Sortino, 1994), which are among the most important and 

common performance measures. The Sharpe ratio measures the portfolio's excess return, the return achieved by 

the portfolio compared to the risk-free rate, per unit of risk. On the other hand, the Sortino ratio, as a more complete 

version of the Sharpe ratio, distinguishes between desirable and undesirable returns, considering only downside 

risk (undesirable returns) in its calculations. The Sharpe and Sortino ratios can be calculated using the following 

mathematical relations: 

 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝

 (23) 

 𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑑

 (24) 
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In the formulas above, 𝑅𝑝 is the portfolio return, 𝑅𝑓 is the risk-free rate, 𝜎𝑝 is the standard deviation of excess 

returns, and 𝜎𝑑 is the standard deviation of downside returns (undesirable returns). Accordingly, the calculated 

values for each of these metrics for the GRMVE model and the equal-weight portfolio are shown in Table 4. 

Table 4. Performance metrics for evaluation 

Model Sharpe Ratio Sortino Ratio HHI 

GRMVE 1.3621 *N/A 0.0720 

Naive (
𝟏

𝒏
) 1.4174 2.1210 0.0500 

 

The very close performance of the two models is clearly evident from the results in Table 4. A very important and 

interesting point regarding the GRMVE model, which was also discussed earlier, is its high capability in risk 

management and avoidance of negative returns. To calculate the Sortino ratio, the standard deviation of undesirable 

returns is placed in the denominator of Equation 24. However, given that the GRMVE model recorded only one 

negative return, its standard deviation of undesirable returns becomes zero (the standard deviation of a single 

number is zero), and consequently, its Sortino ratio is undefined (N/A). 

To better illustrate the performance of the GRMVE model compared to the equal-weight portfolio on the out-of-

sample data (6-month period), Figure 4 has been plotted. All the points raised regarding the higher volatility of the 

equal-weight portfolio's returns, the greater stability of the GRMVE model's performance, and its lower drawdowns 

(declines) compared to the equal-weight portfolio during downtrends are clearly observable in Figure 4. 

 

Figure 4. Performance Comparison of GRMVE and Naive Model 

Discussion and Conclusion 

The empirical findings of this study demonstrate that integrating robust optimization with an entropy-based 

diversification mechanism within a multi-period mean–variance framework produces portfolios that exhibit high 

stability, competitive returns, and superior downside protection relative to the naïve 1/N benchmark. Although the 

equally weighted portfolio slightly outperformed the proposed model in cumulative return over the six-month out-of-

sample horizon, the robust mean–variance entropy structure achieved comparable performance while exhibiting 

fewer negative-return months and lower drawdown intensity. This result aligns with the well-documented resilience 

of naïve diversification reported in the literature (2), yet it also confirms that structurally enhanced optimization 

models can approach or match naïve performance when estimation risk and concentration effects are properly 
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controlled. The Sharpe ratios of both models were close, suggesting that the robust-entropy design successfully 

mitigated the typical overfitting problem associated with classical mean–variance solutions. From a theoretical 

standpoint, this finding is consistent with the argument that the primary weakness of traditional optimization lies in 

error amplification rather than in the risk-return trade-off itself (3). By incorporating a budgeted uncertainty set, the 

model internalizes return estimation risk, thereby preventing extreme weight allocations that would otherwise 

emerge from small changes in input parameters (5, 6). The close alignment between the robust model’s 

performance and the naïve strategy suggests that robustness can neutralize the structural advantage often 

attributed to equal weighting under noisy estimation environments (2). 

A notable contribution of the results concerns diversification behavior. The Herfindahl–Hirschman Index (HHI) 

values of the robust entropy model were extremely close to those of the equal-weight benchmark, indicating that 

Yager entropy effectively prevents capital concentration without forcing mechanical uniformity. This observation 

corroborates the broader literature on entropy-based diversification measures, which emphasizes their ability to 

distribute weights more evenly while preserving optimization flexibility (9, 10). Recent advances integrating ordinal 

information and diversification constraints into portfolio optimization further support the importance of structured 

diversification to avoid corner solutions (11). In small and constrained markets, robust maximum diversified 

portfolios have demonstrated that diversification mechanisms combined with robustness improve stability and 

reduce vulnerability to structural shocks (8). The present findings extend these insights by showing that entropy-

based diversification remains effective even when embedded within a multi-period robust framework under 

transaction costs. Importantly, diversification in this study did not significantly erode expected return, which 

addresses a common criticism that diversification penalties may dilute performance. Instead, the entropy 

component appears to function as a stabilizer, reinforcing portfolio balance across periods. 

The multi-period repeated optimization structure also contributed meaningfully to performance stability. Portfolio 

weights exhibited relatively small changes between periods, implying reduced transaction volumes and lower 

implicit turnover risk. This finding aligns with prior research demonstrating that multi-period robust allocation 

strategies with transaction cost considerations yield smoother rebalancing paths (7, 16). Bibliometric evidence 

indicates that dynamic portfolio modeling has become central to modern optimization research, particularly in 

contexts requiring adaptability under evolving information (15). Scenario-based and multistage planning frameworks 

under budget uncertainty further show that dynamic adjustments enhance resilience when uncertainty is explicitly 

modeled (17). In the current study, repeated optimization allowed the model to update return estimates each period 

while preserving structural diversification, creating a balance between adaptability and stability. This dual property—

dynamic responsiveness combined with controlled turnover—addresses a longstanding tension in portfolio 

management between flexibility and cost efficiency. 

Another important dimension of the discussion concerns uncertainty modeling. By treating expected returns as 

uncertain parameters bounded within a budgeted uncertainty set, the model effectively guards against adverse 

deviations without resorting to excessive conservatism. The theoretical underpinnings of this approach stem from 

robust linear programming developments showing that uncertainty budgets control the degree of protection while 

preserving tractability (3, 6). The empirical stability observed in the out-of-sample phase suggests that moderate 

robustness, rather than extreme worst-case protection, is sufficient to reduce performance volatility. This 

observation is consistent with the argument that overly conservative uncertainty sets may unnecessarily sacrifice 

return potential (5). In comparison to stochastic or regret-based models, which incorporate volatility-sensitive risk 
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measures (18), the budgeted robust approach maintains computational simplicity while delivering competitive 

performance. Moreover, robust modeling appears particularly valuable in high-volatility environments such as 

cryptocurrency markets, where parameter uncertainty is magnified (14). The findings therefore reinforce the 

conceptual claim that robustness acts as an antidote to estimation error amplification while preserving feasible 

solution structures. 

The discussion would be incomplete without situating the results within the broader evolution of AI-enhanced 

portfolio management. Although the present study does not directly embed machine learning forecasting, it is 

compatible with predictive inputs generated by AI systems. Machine learning-driven return prediction models have 

demonstrated improved risk-adjusted allocation performance in digital asset markets (19), and time-series 

forecasting integrated with optimization frameworks enhances dynamic decision-making (20). Reinforcement 

learning approaches to portfolio ranking and matching similarly underscore the growing convergence between 

predictive analytics and optimization (21). AI-based evaluation frameworks emphasize performance assessment 

beyond variance metrics, incorporating broader criteria of stability and adaptability (4). The current robust entropy 

model can serve as a structural backbone for such AI-generated forecasts, ensuring that predictive insights do not 

reintroduce concentration risk or estimation instability. Furthermore, the ability to accommodate structural 

constraints such as ESG considerations demonstrates the extensibility of the framework to multi-criteria investment 

objectives (22). In this sense, the model represents not merely an incremental extension of mean–variance theory, 

but a modular platform adaptable to modern intelligent finance ecosystems. 

Behavioral finance insights also provide interpretive depth to the results. Research on regret-based portfolio 

behavior suggests that investors tend to concentrate holdings in assets with recent strong performance, thereby 

increasing exposure to reversal risk (12, 13). By embedding entropy-based diversification, the model implicitly 

counteracts such behavioral biases, enforcing structural balance even when short-term signals might favor 

concentration. This design principle is particularly relevant in volatile equity markets dominated by high-

capitalization stocks, where correlation clustering can amplify systemic risk. The stability observed in the HHI 

comparisons indicates that entropy regularization mitigates excessive reliance on a small subset of dominant firms. 

Hence, beyond technical robustness, the model offers a behavioral safeguard that tempers overreaction to recent 

performance patterns. 

Overall, the findings demonstrate that combining budgeted robustness, entropy-based diversification, and 

repeated multi-period optimization yields portfolios that achieve a delicate equilibrium between return 

competitiveness and risk containment. While naïve diversification remains a formidable benchmark (2), the 

proposed structure narrows the performance gap while providing superior downside consistency. The synergy 

among robust theory (6), entropy-based diversification (11), and dynamic adjustment (15) appears to resolve key 

weaknesses of classical mean–variance optimization without incurring excessive complexity. These results 

reinforce the notion that future portfolio research should emphasize integrated frameworks rather than isolated 

methodological enhancements. 

Despite its contributions, this study has several limitations. First, the empirical evaluation was conducted over an 

18-month horizon using a selected subset of large-cap U.S. equities, which may limit generalizability across longer 

timeframes, different economic cycles, or alternative asset classes. Second, the uncertainty set calibration relied 

on a fixed budget parameter, and different tuning choices may produce varying trade-offs between conservatism 

and performance. Third, although the repeated optimization structure reduces turnover volatility, transaction costs 
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were modeled proportionally and did not incorporate liquidity slippage or market impact effects. Finally, the study 

did not integrate explicit predictive machine learning models, meaning that return inputs were historical averages 

rather than forward-looking forecasts. 

Future research may extend this framework in several directions. One avenue is the integration of advanced 

machine learning forecasting techniques within the robust entropy structure to assess whether predictive 

improvements translate into superior out-of-sample stability. Another direction involves testing alternative 

uncertainty sets, including ellipsoidal or distributionally robust formulations, to compare conservatism-performance 

trade-offs. Extending the model to alternative markets—such as emerging economies, cryptocurrency exchanges, 

or ESG-constrained universes—would enhance external validity. Additionally, exploring hybrid multi-period 

approaches that combine repeated optimization with partial rebalancing could provide deeper insights into turnover-

efficiency trade-offs across different volatility regimes. 

For practitioners, the results suggest that incorporating structured robustness and diversification mechanisms 

into portfolio construction can meaningfully enhance stability without sacrificing competitive returns. Asset 

managers may consider embedding entropy-based diversification penalties to avoid concentration risk in high-

capitalization equities. Investment firms operating under uncertain macroeconomic conditions can benefit from 

moderate budgeted robustness to shield portfolios against estimation shocks. Finally, dynamic repeated 

optimization with disciplined turnover control offers a pragmatic pathway to balance adaptability and transaction 

efficiency in real-world portfolio management contexts. 
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